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SUMMARY
Determining the spatial organization and morphological characteristics of molecularly defined cell types is a
major bottleneck for characterizing the architecture underpinning brain function. We developed Expansion-
Assisted Iterative Fluorescence In SituHybridization (EASI-FISH) to survey gene expression in brain tissue, as
well as a turnkey computational pipeline to rapidly process large EASI-FISH image datasets. EASI-FISH was
optimized for thick brain sections (300 mm) to facilitate reconstruction of spatio-molecular domains that
generalize across brains. Using the EASI-FISH pipeline, we investigated the spatial distribution of dozens
of molecularly defined cell types in the lateral hypothalamic area (LHA), a brain region with poorly defined
anatomical organization. Mapping cell types in the LHA revealed nine spatially and molecularly defined sub-
regions. EASI-FISH also facilitates iterative reanalysis of scRNA-seq datasets to determine marker-genes
that further dissociated spatial and morphological heterogeneity. The EASI-FISH pipeline democratizes
mapping molecularly defined cell types, enabling discoveries about brain organization.
INTRODUCTION

Molecular definition of cell types provides a way to classify neu-

rons, and marker-genes can be leveraged to interrogate the

function of cell types in neural circuits (Luo et al., 2018).

Single-cell RNA sequencing (scRNA-seq) has greatly acceler-

ated discovery of molecularly defined cell types (Saunders

et al., 2018; Tasic et al., 2018; Zeisel et al., 2018). Fluorescence

in situ hybridization (FISH) is well suited to establish the spatial

organization of cell types identified from scRNA-seq, but this re-

quiresmapping the co-expression patterns of dozens of genes in

the same cells in three-dimensional (3D) tissue volumes.

Although several multiplex FISH methods have been reported

(Chen et al., 2015b; Codeluppi et al., 2018; Moffitt et al., 2018;

Nicovich et al., 2019; Qian et al., 2020; Shah et al., 2016; Wang

et al., 2018), it remains a bottleneck for many research labs

due to complex procedures and challenging computational ana-

lyses. Additionally, most methods are restricted to thin tissue
Cell 184, 6361–6377, Decem
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sections (10-20 mm), obscuring three-dimensional (3D) relation-

ships of cell types within brain structures.

To overcome these limitations, we developed Expansion-

Assisted Iterative-FISH (EASI-FISH) with multi-round multi-

plexed RNA-FISH in 300-mm-thick brain sections. Expansion

microscopy (ExM) (Chen et al., 2015a; Tillberg et al., 2016) is

advantageous for high-resolution imaging in thick tissue, allow-

ing 3D reconstruction of tissue volumes. We also developed an

analysis pipeline for rapid and automated data processing.

We applied EASI-FISH to the mouse lateral hypothalamic area

(LHA), an important motivational center regulating ingestive, so-

cial, arousal, and autonomic functions (Bernardis and Bellinger,

1993; Petrovich, 2018; Rossi et al., 2021; Stuber and Wise,

2016). Despite extensive functional investigation, an under-

standing of the LHA is limited by poor anatomical definition.

We mapped molecularly defined cell type markers identified

from LHA scRNA-seq datasets and uncovered an unexpected

molecular parcellation of the LHA not previously identified from
ber 22, 2021 ª 2021 The Authors. Published by Elsevier Inc. 6361
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Figure 1. EASI-FISH method

(A) Schematic of the EASI-FISH process.

(B) Example EASI-FISH image. Scale bar: 10 mm.

(C) Axial projection and single-plane images of Gad1 expression in two cortical neurons before (13) and after (23) expansion. Scale bar: 5 mm.

(D) Chemical reaction of Melphalan with Acryloyl-X, SE to produce MelphaX, which reacts with RNA and can be incorporated into a hydrogel matrix.

(E) Spot fluorescence intensities with RNA anchored by Label-IT (0.1 mg/ml) or Melphalan (0.1 mg/ml). ****p < 0.0001. Error bars: SEM. Statistics: Table S1.

(F and G) (F) Representative FISH images (Gad1 in cortex) and (G) signal-to-noise ratio (SNR) from Label-IT or Melphalan-anchored tissue samples. Scale bar: 5

mm. SNR = Avg (pixel values) / SD (pixel values). ****p < 0.0001. Statistics: Table S1.

(H and I) (H) Representative images and (I) quantification comparing photostability of hairpins conjugated with Alexa Fluor 647 (AF647) and Janelia Fluor 669

(JF669). Scale bar: 5 mm.

(J) 3D rendering of a thick tissue volume generated by EASI-FISH with 2 rounds of 3-plex FISH. Scale bar:100 mm. fx: fornix.

(K and L) Slc17a7 and Gad1 expression in the cortex. Scale bar: 10 mm.

(M) LHA tissue volume with 24 marker-genes (single optical plane shown). Genes and colormap listed below. Tissue dimension: 0.8 mm 3 0.8 mm 3 0.3 mm.

Scale bar: 100 mm. fx: fornix.

(legend continued on next page)
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cell density measurements. Our results demonstrate the capa-

bility of the EASI-FISH data acquisition and analysis pipeline to

reveal the organization of cell types in the LHA that underlie

the multifaceted functions of this important brain area.

RESULTS

EASI-FISH protocol development
We designed and implemented EASI-FISH (Figure 1A) in thick

tissue sections from cortex, central amygdala (CeA), and LHA

by building on expansion microscopy enhanced smFISH (ex-

FISH) (Chen et al., 2016), where tissue is physically expanded

by embedding in a swellable hydrogel (Chen et al., 2015a; Till-

berg et al., 2016). As in exFISH, uniform expansion is achieved

by proteolytic digestion of the embedded tissue, while preser-

ving RNA via covalent attachment to the hydrogel mesh for

detection by FISH methods, including amplification with the hy-

bridization chain reaction (HCR) (Figures 1A and 1B). Expansion

reduces tissue autofluorescence and light scattering. It also in-

creases the effective imaging resolution, increasing the number

of individual RNA molecules that may be resolved per cell

(Figure 1C).

We optimized the procedure for improved detection accuracy

and robust sample processing across multiple rounds. First, to

covalently anchor RNA molecules to the hydrogel, we used the

bis-nitrogen mustard, Melphalan, instead of the exFISH linker,

Label-IT. Melphalan is an alkylating agent with a primary amine

available for conjugation to NHS esters, but it is widely available

through major chemical vendors, 50 times less expensive than

Label-IT, has two alkylating moieties per molecule, and could

be incorporated into the gel matrix (Figure 1D). Importantly,

RNA retention with Melphalan was comparable to Label-IT (Fig-

ure S1A), with significantly increased spot brightness (Figure 1E)

and reduced background compared with Label-IT (Figure 1F),

improving the signal-to-noise ratio by 30% (Figure 1G). We

also improved tissue clearing and reagent penetration through

300-mm-thick tissue volumes when compared to the original ex-

FISH protocol (Chen et al., 2016) (STAR Methods; Figure S1B).

For amplification of FISH signal, we used HCR v3.0 (Choi et al.,

2018) because the probe and amplification oligos are short (50–

100 nt) and can therefore rapidly penetrate thick tissue, while

also reducing nonspecific spots. In contrast, another FISH signal

amplification method, RNAscope (Wang et al., 2012), did not

show sufficient reagent penetration in thick tissues (Figures

S1C and S1D).We optimized hybridization conditions to improve

detection specificity (STAR Methods; Figure S1E). Image acqui-

sition was performed using selective plane illumination micro-

scopy (SPIM, Zeiss Z.1 microscope), readily achieving single

transcript sensitivity following HCR amplification.

To minimize mobile spots due to light-induced fragmentation

of HCR products, we used low laser intensity or anti-fade com-

pounds (STAR Methods; Video S1; Table S2; Figures S1F and

S1G). To improve signal photostability, we custom-labeled the
(N) 24 marker-gene expression in cells from 3 ROIs in (M). Scale bar: 10 mm.

(O) Spot counts for Meis2 from EASI-FISH round 1 and round 9.

(P) Correlation between EASI-FISH spot counts and scRNA-seq UMIs for 24
corresponding HCR amplification hairpins with the photostable

far-red dye Janelia Fluor 669 (JF669) (Grimm et al., 2017) (Fig-

ures 1H and 1I)

Three transcript species were detected in each imaging round,

compatible with the spectral capabilities of standard fluores-

cence microscopes. For multiple rounds of FISH, we adapted

a stripping and reprobing strategy that uses DNase I to remove

probes andHCRamplification product from each previous round

(Figure S1H) (Lubeck et al., 2014). For multi-round registration

and cell segmentation, we used cytosolic RNA stained with

DAPI (40,6-diamidino-2-phenylindole) (Xu et al., 2020), which

we refer to as cytoDAPI. Although DAPI is primarily used as a

DNA stain, after DNase treatment, it provides a good near-UV

cytosolic stain that is abolished by RNase treatment (Figure S1I).

With these improvements, EASI-FISH enables robust, high qual-

ity andmultiplexed FISH imaging of thick tissue volumes (�1mm

3 1 mm 3 0.3 mm in pre-expansion dimensions) (Figure 1J).

EASI-FISH data processing
Multi-round, high resolution imaging of thick tissue specimens

for EASI-FISH produces multi-terabyte (TB) images. Therefore,

we built computational image processing tools to handle these

large datasets in a consistent and efficient manner (Figures 2A

and 2B).

Stitching

For EASI-FISH in expanded thick tissue samples, multiple sub-

volumes (tiles) were sequentially acquired, followed by computa-

tional stitching into a single large image. We used an Apache

Spark–based high-performance stitching pipeline (Gao et al.,

2019), which includes a flat-field correction step, followed by

globally optimal translation for each tile (Figure S2A).

Round-to-round registration

Next, image volumes from each round of FISH were aligned us-

ing cytosolic contours of cytoDAPI using an automated nonrigid

3D registration pipeline (Figure S2B). The pipeline is highly accu-

rate, with 99% ± 0.8% structural similarity between fixed and

nine moving image volumes (STAR Methods; Figure S2C), and

it is more than 10-times faster compared to other deformable

registration methods (e.g., ANTs) (Yushkevich et al., 2016).

Cell segmentation

CytoDAPI provided a cytosolic signal for generating cell seg-

mentation masks. The high accuracy of the registration pipeline

allowed us to apply cell segmentation masks from a single round

of imaging to all other rounds, which simplified analysis and

reduced computation time.

Accurate segmentation of in situ-stained volumetric (3D) fluo-

rescence image data has been a long-standing challenge that

can degrade the accuracy of multiplexed FISH analysis. We

developed a deep learning-based automated 3D segmentation

algorithm, called Starfinity (Figure 2C). Starfinity is an extension

of StarDist, a nuclear detection method (Schmidt et al., 2018;

Weigert et al., 2020). In contrast to StarDist, Starfinity aggregates

the dense prediction of cell border distances into pixel affinities
marker-genes from the LHA.

Cell 184, 6361–6377, December 22, 2021 6363
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Figure 2. EASI-FISH analysis pipeline

(A) EASI-FISH data processing workflow.

(B) Representative images showing stitching, registration, segmentation, and spot detection in large image volumes. Scale bar: 100 mm.

(C) Example of Starfinity segmentation from cytoplasmic DAPI.

(D) Representative hAirlocalize-enabled spot detection in cell highlighted with green square in (C). Scale bar: 10 mm.

(E) Spot counts per neuron.
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without imposing convex cell boundary constraints (STAR

Methods). After generating appropriate training data, a Starfinity

model was trained to predict cell body shapes from cytoDAPI im-

ages, outperforming several other segmentation methods (Fig-

ure S2D; Table S3). We manually inspected �5% of automati-

cally segmented cells from 4 samples (�4,000 out of 80,000

cells) and found that 93% of cells were properly segmented,

4% of cells over-segmented, 1% of cells undersegmented,

and 2% of cells were contaminated by neighboring cells (Fig-

ure S2E). Becausemost oversegmented cells (62%) can be iden-

tified and rapidly corrected post hoc by quantitative and

semi-automated criteria (STAR Methods), the final estimated

segmentation accuracy was 95.5%.

Spot detection

We adapted Airlocalize (Lionnet et al., 2011) for spot detection

(Figure 2D). To rapidly process more than 10 TB of image data,

we developed hAirlocalize (high throughput spot detection

based on Airlocalize) to parallelize the spot detection process.

For cells with very high gene expression, where single spots

cannot be resolved even with 23 expansion, we measured the

total intensity per cell and converted the intensity to spot counts

based onmeasured well-isolated single spot intensities for these

genes (STAR Methods; Figures S2F and S2G).
6364 Cell 184, 6361–6377, December 22, 2021
We combined these computational modules into a self-

contained, platform-agnostic computational pipeline for end-

to-end EASI-FISH data analysis. The EASI-FISH pipeline can

rapidly process large datasets greater than 10 TB in size with

minimal manual intervention (STAR Methods).

EASI-FISH is sensitive and stable
Using this analysis pipeline, we evaluated performance of the

EASI-FISH procedure. RNA detection efficiency with 20-probe

sets was 92% ± 2% for Gad1 based on targeting single tran-

scripts with two colors of interleaved 10-probe sets (STAR

Methods; Figure S1J). To determine the sensitivity of EASI-

FISH, we analyzed genes from LHA with low expression levels

according to scRNA-seq. Low-expressed genes, Klhl13 (RNA-

seq UMImean = 48) and Igf1 (UMImean = 15), were co-expressed

in all melanin-concentrating hormone (Pmch)-expressing neu-

rons in the LHA, so we used the fraction of Pmch+ neurons in

which we cannot detect these genes as an estimate of false

negative rate at the cell level. Among the Pmch+ neurons that

were analyzed, 34/34 (100%) expressed Klhl13 and 38/41

(93%) expressed Igf1 with an average background-subtracted

spot count per cell of 195 for Klhl13 and 41 for Igf1 (Figure S1K),

indicating a low dropout rate with EASI-FISH.
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Figure 3. Profiling LHA molecular markers

with EASI-FISH

(A) Location of imaged region from LHAmapped to

the coronal mouse brain atlas. Image credit: Allen

Institute.

(B) Spatial organization and proportion of excit-

atory and inhibitory neurons and non-neurons in

the imaged LHA region (total: 66,488 cells from

3 mice). Scale arrows: 150 mm. EP: en-

topeduncular nucleus, fx: fornix, ZI: zona incerta.

(C and D) t-distributed stochastic neighbor

embedding (tSNE) plot for (C) excitatory and (D)

inhibitory neurons in the LHA, with cell types color-

coded by EASI-FISH cluster.

(E and F) Expression (spot counts) of 24 FISH

marker-genes in the (E) excitatory and (F) inhibi-

tory EASI-FISH clusters, shown by violin plots.
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We examined two sources of false-positive spot assignments:

nonspecific probe binding and amplification and true-positive

transcript detections that may not originate within the segmented

cell body. Because we usedHCR v3.0, nonspecific probe binding

and amplification was low (1 per 3000 mm3), which we determined

by applying FISH probes to samples in the absence of the target

gene (GFPprobes inwild-typemouse tissue; FigureS1E).Weesti-

mated background (false-positive) spot detection rate using two

genes with mutually exclusive expression patterns based on

scRNA-seq (Pdyn and Tacr3) (1 per 50 mm3, �30 spots/cell)

(STAR Methods; Figure S1L). We observed a similarly low false-

positive background detection rate for mutually exclusive genes

for Slc17a7 (Vglut1) and Gad1 in cortical neurons (Figures 1K

and 1L). These background spots, detected in cells in which we

confirmed correct cell boundary segmentation, are likely true

RNA transcripts detected en passant neuronal processes that

are adjacent to the cell body or a result of light-induced mobile

spots fragmented from positive cells.

Spot count measurements were highly reproducible across

multiple rounds (Figure S1M), between replicates of EASI-FISH

experiments from different animals (Figure S1N) and were also
Cell
well correlated with scRNA-seq data (r =

0.96, p = 0.0081, based on measurement

of Klhl13, Igf1, Pdyn and Tacr3). High

RNA retention was observed after re-

probing the same targets after at least 7

rounds (Figure S1O), even with an

elapsed time of more than 40 days

(93.5%, n = 4 genes). Taken together,

EASI-FISH showed high reproducibility

between samples, minimal RNA loss

across hybridization rounds, good corre-

lation with scRNA-seq data, high sensi-

tivity, and a low dropout rate.

Application of EASI-FISH for
profiling LHA marker-genes
We applied the EASI-FISH sample pro-

cessing and data analysis pipeline for

in-depth examination of the molecularly

defined cell types in the LHA. We per-
formed scRNA-seq on manually picked LHA neurons and com-

bined this data with published LHA scRNA-seq data collected

with droplet-based methods (Mickelsen et al., 2019; Rossi

et al., 2019) to determine consensus cell clusters across three

datasets (Figure S3A). Clustering analysis of the combined

data identified 17 glutamatergic Slc17a6 (encoding Vglut2)-ex-

pressing clusters (labeled e1-e17) and 17 GABAergic Slc32a1

(encoding Vgat)-expressing clusters (labeled i1-i17) (Figures

S3B–S3D). Each cluster included cells from at least 2 of the 3 da-

tasets (Figure S3E). A combinatorial set of 24 marker-genes was

selected for subsequent EASI-FISH experiment to map major

cell types (STAR Methods; Figures S3F and S3G; Table S5;

and Data S1).

We used EASI-FISH to profile these marker-genes in tissue

volumes (�1 mm 3 1 mm 3 0.3 mm) taken from the tuberal

LHA (Figure 3A). The tuberal LHA is associated with eating,

drinking, and arousal; and it corresponds to the area used for

the scRNA-seq tissue samples. Nine rounds of 3-plex FISH (24

unique genes) were performed on three samples, including

repeat-rounds for validation at the end of the data collection

sequence to assess sample stability (Figures 1M and 1N), which
184, 6361–6377, December 22, 2021 6365
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Figure 4. Spatial reconstruction of LHA reveals spatio-molecularly defined subregions

(A and B) Selective neighborhood enrichment of (A) Otp/Meis2 and (B) Slc17a6/Slc32a1. Each dot indicates the centroid position of a neuron. Panels are 60 mm

axial projections of sub-volumes. From left to right: anterior to posterior.

(C) Automated workflow for 3D molecular parcellation. C-i: Classify regions based on their relative enrichment for Otp, Meis2, Slc17a6 and Slc32a1. C-ii: 3D

segmentation with GaussianMixtureModels. C-iii: Consensus parcellationmap after rigid registration across animals. C-iv: Post-processing of parcellation map.

Neighboring brain regions (ZI and EP) are shaded in gray in Figures 4A and 4B and C-i and highlighted with dotted line in C-ii and C-iii.

(D) Spatio-molecular parcellation of the LHA, including an additional Hcrt subregion (light blue). From left to right: anterior to posterior. ZI: zona incerta; EP:

entopeduncular nucleus; fx: fornix; LHAd-db: LHA dorsal diagonal band; LHAdl: LHA dorsal lateral region; LHAs-db: LHA suprafornical diagonal band; LHAfm:

(legend continued on next page)
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showed excellent RNA retention (90%, n = 2 genes, 3 mice) be-

tween round 1 and round 9 (Figures 1O and S1P). There was high

correlationwith scRNA-seqUMI counts (r = 0.86, p = 8.43 10�8),

and the EASI-FISH pipeline detected an average of 13-fold (±1.6)

more molecules per cell compared to scRNA-seq UMI counts

(Figure 1P). In these large LHA samples, false-positive detection

rate was low, as measured by spot counts from genes that

showed orthogonal expression patterns (Figure S1Q).

A total of �86,000 ROIs were identified from three specimens

(Table S6), with 36,423 intact neurons (Map1b+) detected in all

imaging rounds (Figure 3B). We used a de novo approach to

identify cell types in the LHA based on 24-plex marker-gene

expression. We grouped neurons into Slc17a6-expressing

(45%, 16,394 cells) and Slc32a1-expressing (55%, 20,029 cells)

(Figures 3C and 3D). Among these neurons, 79% could be clas-

sified based on differential expression of marker-genes, while

7%ofSlc17a6+ neurons (n = 2787) and 14%ofSlc32a1+ neurons

(n = 5034) showed low or no expression of marker-genes other

than Map1b, Slc17a6, Slc32a1, or Gad1, and were grouped as

unclassified clusters from each type (Ex-25 and Inh-23). Clus-

tering Slc17a6+ neurons by marker-genes separated them into

24 molecularly defined clusters (Figures 3E, S4A, and S4C;

Data S1) and the Slc32a1-expressing population was clustered

into 22 molecularly defined neuronal subtypes (Figures 3F,

S4B, and S4D; Data S1). These molecularly defined clusters

were detected in all three animals (Figures S4A and S4B), except

Inh-1 (STAR Methods). Among the molecularly defined clusters,

Inh-3, Inh-15, and Inh-21 were dominated by cells from the zona

incerta (ZI); Ex-12 and Ex-23 were enriched for cells from the en-

topeduncular nucleus (EP) (Data S1).

Strong correlations were found between many scRNA-seq

and EASI-FISH clusters (Figures S4F and S4G). scRNaseq clus-

ters that did not map well are either rare or not present in the re-

gion of the LHA that we profiled with EASI-FISH, based on

marker-gene distribution from Allen Brain ISH Data (STAR

Methods).

Spatial reconstruction of LHA reveals molecularly
defined subregions
The LHA is one of the largest and most intensively studied re-

gions in the hypothalamus. However, previous studies do not

demarcate subregions of the lateral hypothalamus in mouse

(Franklin and Paxinos, 1997; Lein et al., 2007), and, in the rat,

limited parcellation has been proposed by combining cytoarch-

itectural and connectivity information (Geeraedts et al., 1990;

Hahn et al., 2019; Hahn and Swanson, 2010, 2015; Veening

et al., 1987).

Computational LHA parcellation

Because the EASI-FISH pipeline provides detailed molecular in-

formation along with location of every cell, we pursued a ma-

chine learning approach to identify LHA subregion boundaries

by combining molecular, spatial, and cell density information in
LHA medial fornical region; LHAfl: LHA lateral fornical region. Solid lines: parc

transition zones. Scale arrows in Figures 4A–4D: 150 mm.

(E) Excitatory and inhibitory EASI-FISH cluster enrichment in parcellated subreg

outlines: statistically significant (permutation test, p < 0.05, effect size: Cohen’

molecularly defined cell type. Color bar: fraction of neurons from selected cell ty
these datasets. We prioritized reproducibility by defining

consensus regions that can be automatically aligned between

samples from multiple mice.

To examine the spatio-molecular organization of the LHA with

a limited number of marker-genes, we leveraged the hierarchy of

the cell type gene expression profiles, selecting neurotransmitter

transporters for excitatory and inhibitory neurons (Slc17a6 and

Slc32a1) and transcription factors (Otp and Meis2), which have

important developmental and cell specification functions in the

LHA (Romanov et al., 2020). Principal component analysis of

the spatial distribution of all 24 marker-genes also identified

these four genes as having the largest magnitude weights and

revealed distinct 3D spatial patterns in the LHA (Figures S5A–

S5D). The expression of these genes showed a central Meis2-

expressing wedge within the LHA that bisected Otp-enriched

areas near the fornix and the ZI (Figuress 4A and S5E), which

were further subdivided by Slc17a6 and Slc32a1 (Figures 4B

and S5F).

To execute an unbiased parcellation of the LHA, we developed

a computational approach with the following steps: (1) auto-

mated volumetric segmentation based on spatial distribution of

cells co-expressing combinations of Otp or Meis2, and

Slc17a6, or Slc32a1; (2) rigid registration of the segmented

volumes to align samples from biological replicates; and (3)

generation of a consensus parcellation across multiple samples

(Figure 4C). All steps were performed using the entire image vol-

ume, which we present using axial projections of 4 subvolumes

(Figures 4A–4C).

First, for tissue volumes from each animal, we plotted the

spatial distribution of cells selectively expressing Otp or Meis2,

and Slc17a6 or Slc32a1; and applied spatial density-based

smoothing (example images in Figure 4A and 4B). We then clas-

sified each neuron into broad cell classes (Otp/Slc17a6, Otp/

Slc32a1, Meis2/Slc17a6, Meis2/Slc32a1) based on the relative

spatial enrichment of the two pairs of genes (example images

in Figure 4C-i) and used Gaussian mixture models for 3D seg-

mentation of the imaged tissue volumes (example images in Fig-

ure 4C-ii). To evaluate the generality of this strategy, we also

applied our analysis to a spatial transcriptomic dataset from

the visual cortex (Wang et al., 2018) and recovered the expected

cortical lamination (Figures S5G–S5L).

We assessed generalization of the LHA parcellation across

animals by performing rigid alignment on the segmented tissue

volumes. The degree of alignment was quantified on fiducial

landmarks (ZI, EP and the fornix) (average intersection over

union between LHA1 and LHA3: 0.71; between LHA2 and

LHA3: 0.76) as well as spatial distribution of marker-genes (Fig-

ure S5M). To estimate the consensus anatomical parcellation,

we performed Simultaneous Truth and Performance Level Esti-

mation (STAPLE) (Warfield et al., 2004), which eliminated

discordance at boundaries of the segmented subregions (Fig-

ure 4C-iii).
ellation based on Otp, Meis2, Slc17a6, and Slc32a1 expression. Gray/italic:

ions, as compared to distribution from all neurons (top, STAR Methods). Gray

s h > 0.2) enrichment of cell types. Gray circles: percent of neurons in each

pe in each subregion. Statistics: Table S1.
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Figure 5. Molecularly defined cell types and afferent axons are enriched in LHA subregions

(A–E) Molecularly defined clusters enriched in (A) LHAd-db, (B) LHAs-db, (C) LHAdl, (D) LHAfm, (E) LHAfl subregions. Panels are 60 mm axial projections of sub-

volumes. From left to right: anterior to posterior. Cytosolic DAPI stain with all cells in light gray. Scale arrows: 150 mm.

(legend continued on next page)
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Computational parcellation based on Otp, Meis2, Slc17a6,

and Slc32a1 defined 5 zones in the LHA (Figures 4C-iv and

4D), most of which have not been described previously. Two

prominent bands run diagonally at an approximately 60-degree

angle from each other. The dorsal diagonal band (LHAd-db) is

below the ZI and is enriched for excitatory neurons. A supraforn-

ical diagonal band (LHAs-db) is dorsal and lateral to the fornix

and is enriched in inhibitory neurons. The diagonal bands sur-

round the wedge-like Meis2-enriched excitatory subregion in

the dorsal lateral region (LHAdl), which is flanked laterally by

the EP. The medial fornical area (LHAfm) is modestly enriched

in inhibitory neurons. The subregion lateral to the fornix (LHAfl)

is enriched for excitatory neurons. In the posterior portion, the

LHAd-db and LHAdl become less defined, leaving this portion

of the volume not well demarcated by the above 4 genes.

Instead, this region is enriched for hypocretin (Hcrt+) neurons

(Data S1, Ex-2), an important neuropeptide secreting population,

which is enriched in a diagonal band running in the same direc-

tion as the LHAd-db. We defined this sixth subregion as the hy-

pocretin neuron-enriched diagonal band (LHAhcrt-db).

The subregions in the LHA that we identified by Otp, Meis2,

Slc17a6, and Slc32a1 co-expression coarsely tracked with

neuronal density in this region (Figure S5N). For example, a

dense group of neurons running from the fornix to the ZI was

noted previously in the rat brain and named the suprafornical

LHA (Hahn et al., 2019; Hahn and Swanson, 2010, 2015).

However, we discovered that consideration of molecular identity

revealed a more intricate structural organization that was subdi-

vided between the LHAfm, LHAs-db, and LHAd-db.

Neuronal cell types in LHA subregions

Next, we considered the relationship of molecularly defined cell

types to these LHA subregions. Although molecularly defined

cell types were intermingled (mean neighborhood composition

in a 50-mm-radius: 16 cell types), they were not randomly distrib-

uted (Complete Spatial Randomness testing, p value < 0.05,

Table S1). Most cell types were spatially enriched in one or

more of the LHA subregions (Figures 4E, 5A, 5B, 5C, 5D, 5E

and S6A), with good correlation between animals (Figure S6B).

Additional differential spatial enrichment of molecularly defined

cell types was observed within LHAfl and LHAs-db, subdividing

the LHA into nine subregions (dotted lines in Figure S6C and

quantification in Figures S6D and S6E).

After clustering themolecularly definedcell types based on their

spatial overlap (STAR Methods), we found groups of molecularly

defined cell types enriched in regions corresponding to LHAs-

db, LHAd-db, LHAfl and LHAfm (Figures S6F and S6G). Taken

together, the 3D-molecular organization of LHA subregions can

be determined with either a limited set of marker-genes for broad

cell classes or a larger set ofmarker-genes for individual cell types.

LHAd-db

The LHAd-db contains a mixture of mainly excitatory and a few

inhibitory cell types. Excitatory cell types Ex-13 (Gpr101/Calb1–),
(F–J) Average distance to nearest neighbor (ANN) among molecularly defined ce

(A–E). Rows: cell type used to find nearest neighbor; columns: corresponding ce

(K) Quantification of axons projecting to or passing through the LHA subregions

(L) Representative images showing differential projection patterns in the LHA fro

(MEA), diagonal band nucleus (NDB) and medial mammillary nucleus (MM).
Ex-15 (Th/Trh–), Ex-19 (Nrgn/Otp), and Ex-22 (Otp/Gpr101–) are

primarily localized to LHAd-db (Figure 5A). Ex-10 (Gal/Slc17a6) is

also enriched in this subregion, but unlike the other cell types,

Ex-10 forms a band around the LHAd-db (Figure 5A). In addition,

a variety of inhibitory cell types are present in LHAd-db that are

also distributed in the adjacent ZI and LHAs-db (Figure 4E).

Some broadly distributed inhibitory cell types are also observed

in LHAd-db, such as Inh-4 (Gpr101/Gpr83), Inh-10 (Tac2/

Gpr101), and Inh-16 (Calb2/Nrgn–) (Figure 4E).

LHAs-db

Most LHAs-db cell types are inhibitory, with small clusters Inh-2

(Sst/Th), Inh-6 (Tac2/Tac1), Inh-12 (Tac2/Nrgn), and Inh-20

(Meis2/Calb2low/Bdnf–) almost exclusively localized to this sub-

region (Figure 5B). Several LHAs-db clusters are also found in

the ZI, such as Inh-9 (Nts/Meis2), Inh-13 (Tac1/Tac2–), Inh-17

(Calb2/Nrgn), and Inh-19 (Meis2/Calb2high) (Figures 4E and 5B).

There were few excitatory cell types in LHAs-db. Spatial posi-

tioning of cell types within the LHAs-db revealed additional

spatial segregation. Inh-2, 6, 9, 17, and 19 are enriched in the

medial part of the LHAs-db; and Inh-12 is primarily concentrated

in the lateral part of the LHAs-db (Figures S6C–S6D), while Inh-

13 and Inh-20 are more evenly distributed.

LHAdl

LHAdl is a relatively cell-sparse zone (Figure S5N), which is largely

comprised of excitatory cell types similar to those in the adjacent

EP: Ex-14 (Gad1/Meis2), Ex-18 (Gad1/Tac1–), Ex-20 (Tac1/Gad1),

and Ex-23 (Slc17a6/Slc32a1/Sst–) (Figures 4E and 5C).

LHAfm

Amix of excitatory (Ex-3 (Trh/Tac1), Ex-9 (Tac1/Nrgn), and Ex-17

(Gpr101/Calb1)); and inhibitory (Inh-1 (Sst/Otp), Inh-8 (Col25a1/

Otp–), Inh-18 (Nts/Meis2–/Gpr101–), and Inh-22 (Calb1high)) cell

types are localized in the LHAfm, with a higher fraction of inhib-

itory neurons (Figures 4E and 5D). Because the LHAfm is at the

border of the dissection region for scRNA-seq analyses, there

appears to be a larger number of cells lacking specific marker-

genes (i.e., Ex-25 and Inh-23). Some of the LHAfm cell types

are also shared with the adjacent medial-ventral LHAfl, such as

Ex-6 (Tac1/Nrgn) and 7 (Otp/Calb2) (Figure 5D and 5E).

LHAfl

LHAfl is primarily comprised of excitatory cell types with Ex-4,

Ex-8, Ex-11 (Trh-expressing cell types) and Ex-5 (Sst/Slc17a6),

Ex-6 (Tac1/Nrgn–), Ex-7 (Otp/Calb2) (Figure 4E and 5E). Spatial

positioning of cell types within LHAfl revealed additional subdo-

mains (Figures S6C and S6E). Ex-4, Ex-6, Ex-7 are located

medial-ventrally (LHAfl-mv) and Ex-11 dorsal-laterally (LHAfl-

dl), with additional poorly classified excitatory neurons (Ex-25)

in the ventral lateral subdomain (LHAfl-vl) (Figure S6E). In addi-

tion, there is a sparse distribution of inhibitory cell types, such

as Inh-11 (Gal). Another two inhibitory cell types (Inh-8 and Inh-

22) that were primarily localized in the LHAfm were also in LHAfl.

Molecularly defined cell types enriched in the same subre-

gions are typically spatially intermixed, based on average
ll types enriched in LHAd-db, LHAs-db, LHAdl, LHAfm and LHAfl, as shown in

ll type used to compute ANN (STAR Methods).

based on data from the Allen Brain Atlas Connectivity database.

m the central amygdala (CEA), ventral tegmental area (VTA), medial amygdala
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Figure 6. Molecular and spatial organization of major neuropeptide neurons in the LHA

(A) Pmch+ neuron subpopulations. Max-projected coronal and sagittal sections with Cartpt+ in green and Cartpt– in red.

(B) Hcrt+ neuron subpopulations are spatially intermixed.

(C) Trh+ neuron cell types. Left: Spatial distribution of Trh+ clusters. Right: Percent of Trh-expressing neurons in each cluster.

(D) Trh+ clusters soma volumes. ****p < 0.0001. Statistics: Table S1.

(legend continued on next page)
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distance to nearest neighbor (ANN) analysis (Figures 5F–5J). But

segregation of some cell types within these subregions is also

evident, which supports the additional subdivisions of LHAs-db

and LHAfl noted above (Figures S6C, 5G, and 5J).

Transcriptional relatedness of spatially clustered

cell types

For molecularly defined cell types enriched in the same subre-

gion, some corresponded to the same scRNA-seq clusters.

For example, in the LHAd-db, Ex-13, and Ex-19 both have high

correlation with seq-e9 (Otp/Gpr101) from scRNA-seq (Figures

S4F and S4G), revealing additional heterogeneity within

scRNA-seq clusters. However, instances of intermingled excit-

atory and inhibitory cell types were common in all regions,

such as Ex-3 and Inh-8 in the LHAfm and Ex-13, Ex-19, and

Inh-4 in the LHAd-db (Figure 4E).

LHA subregions robust to marker-gene selection

Many cell types showed restricted distribution in the LHA, but

most individual marker-genes (except Hcrt) were not restricted

to a single subregion (Data S1; Figure S6H). Thus, co-expression

relationships between multiple marker-genes are essential for

revealing the underlying spatial organization of molecularly

defined cell types. To determine how well combinatorial gene

expression could predict neuronal spatial positions in the LHA,

we trained a random-forest regression model. Combinatorial

expression of 24marker-genes explained 60 ± 2%of spatial vari-

ation. Excluding any single marker-gene orOtp,Meis2, Slc17a6,

and Slc32a1 in combination did not substantially decrease the

prediction accuracy, indicating that the model was not domi-

nated by individual genes (Figures S6I and S6J).

To evaluate the platform independence of these subregions,

we analyzed a brain slice from the open-source (Vizgen, 2021)

MERFISH mouse brain receptor map dataset, consisting of

483 genes with neuron and glia markers. Principal component

analysis of spatial gene expression patterns was consistent

with the subregions described above (Figures S6K and S6L).

Axonal projections in LHA subregions
We analyzed the spatial distribution of afferent axons projecting

to or passing through the LHA by mapping this detailed LHA

parcellation onto the Common Coordinate Framework from the

Allen Mouse Connectivity Atlas (Oh et al., 2014). Most axonal

projections were not broadly distributed across the LHA. Selec-

tivity was greatest between the LHAdl and LHAfl regions, which

had largely mutually exclusive input patterns. Some axonal pro-

jections mapped onto specific LHA subregions (Figure 5K). For

example, CEA projections were enriched in the LHAd-db, VTA

projections were enriched in LHAdl, and MM projections were

enriched in LHAfl and LHAs-db (Figure 5L).
(E) Cell body morphology from Trh+ subtypes, highlighted by arrowheads.

(F) Sst+ neuron clusters. Left: Spatial distribution of Sst+ neuronal clusters. Right

(G) Cell body volume (top) and solidity (bottom) in Sst+ clusters. ****p < 0.0001. S

(H) Morphology of Sst+ subtypes, highlighted by arrowheads.

(I) Nts+ neuron clusters. Left: Spatial distribution of Nts+ neuronal clusters. From l

Scale arrows: 150 mm.

(J–L) IF and FISH co-detection of five neuropeptides,MCH (J), HCRT (K), TRH, SST

and (L).

(M) IF and FISH co-detection of OTP (left) and MEIS2 (right). Scale bar: 10mm.

(N) IF (MCH) and FISH (Pmch) co-detection in round 1, followed by IF signal rem
Neuropeptide cell types in the LHA
We identified subgroupings of several neuropeptide-expressing

cell types that were spatially distinct and were associated with

morphological differences.

Pmch+ neurons and Hcrt+ neurons

Pmch+ and Hcrt+ neurons are involved in feeding and arousal.

Within the tissue volume that we analyzed, 83% of Pmch+ neu-

rons were in the LHA and 17% in the ZI. Pmch+ neurons could

be subdivided into two populations based on Cartpt expression

that encodes a neuropeptide that regulates energy homeostasis

(Cartpt+: 77%, 388/501 neurons; Cartpt–: 22%,113/501), largely

consistent with scRNA-seq data (Mickelsen et al., 2019). Nearly

all Pmch+ neurons in the ZI were Cartpt+ (99%). Within the LHA,

we observed distinct spatial distributions of the two Pmch+ sub-

populations, with the Pmch/Cartpt– neurons enriched in the

LHAdl, while the Pmch/Cartpt+ population segregated into a

medial population and a ventral lateral population (Figure 6A).

More than 92% of Pmch+ neurons analyzed co-expressed

Gad1 and Slc17a6, consistent with scRNA-seq data and previ-

ous report (van den Pol et al., 2004). Most Pmch+ neurons

(77%) co-expressed the obesity-related GPCR, Gpr83, and

there was a 2-fold greater frequency of Gpr83 co-expressing

cells in the Cartpt+ population (Pmch/Gpr83 co-expression:

Cartpt+: 87%, Cartpt–: 43%).

Hcrt+ neurons were spatially restricted in the LHA samples we

examined and were enriched in a dorsal diagonal band that was

caudal to the LHAd-db. Ourmanually picked scRNA-seq dataset

contained many Hcrt+ neurons, revealing two main subdivisions

based on the expression of Calb2 and Nts. The majority of Hcrt+

neurons (93%, 593/640) expressed Calb2, with a small popula-

tion expressing Nts (5%, 31/640). The remainder of Hcrt+ neu-

rons were negative for both markers (2%, 16/640), which were

enriched in a more caudal position. Although there were some

spatial differences in the distribution of Hcrt+ subtypes, they

were largely intermingled (Figure 6B).

Trh+ neurons

The thyrotropin-releasing hormone (Trh)-expressing neurons in

the LHA have been implicated in promoting arousal behaviors

(Horjales-Araujo et al., 2014). EASI-FISH identified four promi-

nent Trh+ cell types (Ex-3, Ex-4, Ex-8, and Ex-11), which were

spatially and molecularly distinct (Figure 6C). Consistent with

scRNA-seq data, 97.6% (1483/1519) of Trh+ neurons co-ex-

pressed Otp and were found in Otp zones (LHAfm and LHAfl).

Compared to scRNA-seq data, EASI-FISH revealed additional

molecular heterogeneity within Trh+ neurons that were spatially

segregated. Ex-3 was spatially enriched in the LHAfm, had

high expression of Trh, and co-expressed Calb1 and Tac1. In

contrast, Ex-4, Ex-8, and Ex-11 were positioned lateral to the
: Percent of Sst+ neurons in each cluster.

tatistics: Table S1.

eft to right: anterior to posterior. Right: Percent of Nts+ neurons in each cluster.

andNTS (L). Scale bars: 100mm (J andK) left panel, 10mm (J andK) right panels

oval and 3-plex FISH (round 2). Scale bar: 20 mm.
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Figure 7. Morphological diversity and enrichment of IEGs in the LHA clusters

(A and B) Morphological characteristics in (A) excitatory and (B) inhibitory clusters as measured by soma volume (top), fraction of neurons with low solidity and

eccentricity (middle) and fraction of neuron somata contacting a non-neuron cell body (bottom). Dotted lines: average measurements. *p < 0.05, **p < 0.01, ***p <

0.001, ****p < 0.0001. Statistics: Table S1.

(C) Representative images showing soma size diversity and accurate segmentation.

(D) Representative images showing soma shape diversity. Scale bar in (C) and (D): 10 mm.

(E) Soma size, solidity, and marker-gene expression in Ex-10 cluster.

(F) Spatial distribution of soma size (top panel), Galanin (Gal, middle panel), and Th (bottom panel) in Ex-10 cluster. Ex-10 subpopulation enriched in the LHAfl

subregion with large somata.

(legend continued on next page)
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fornix in the LHAfl. Ex-4 was enriched in the LHAfl-mv subdo-

main and co-expressed Th and Calb2. Ex-8 and Ex-11 were in-

termingled in a separate position in the LHAfl-dl subdomain and

were discriminated by expression of Gpr83 and Synpr, respec-

tively (Figure 3E). In addition to spatial differences, the four

Trh+ cell types also showed different cell volumes, with larger

cell bodies in Ex-3 and Ex-8 relative to Ex-4 and Ex-11 (Figures

6D and 6E).

Sst+ neurons

For Sst+ populations, we identified one excitatory (Ex-5) and three

inhibitory (Inh-1, Inh-2, and Inh-5) cell types in the imaged LHA

volume. These populations were spatially separated, with Ex-5

enriched in the LHAs-db and LHAfl, Inh-1 enriched in the LHAfm,

and Inh-2 enriched in the LHAs-db. Inh-5 was dispersed across

multiple LHA subregions (Figure 6F). Inh-1 had the highest Sst

expression level (Figure 3F), and co-expressed Gpr101 and

Nrgn. The excitatory Sst+ cluster Ex-5 and inhibitory cluster

Inh-2 had larger cell bodies than Inh-1 and Inh-5 (Figures 6G

and 6H). In addition, many neurons in the Ex-5 cluster were less

convex compared to the inhibitory Sst+ neuron clusters (Figures

6G and 6H). We also observed co-expression of Sst in a subset

of the Trh+ cluster, Ex-4 and Trh in the Sst+ cluster, Ex-5. Ex-4

and Ex-5 differed in their Th expression, with Ex-5 negative for Th.

Nts+ neurons

Nts+neurons in theLHAhavebeenexamined inmultiplebehaviors,

including thirst (Brown et al., 2015; Kempadoo et al., 2013; Patter-

son et al., 2015). Nts was expressed in several transcriptionally

distinct excitatory (Ex-16) and inhibitory (Inh-9, Inh-14, Inh-18)

cell types. Ex-16, the single Slc17a6-expressing Nts+ population,

was enriched in the dorsomedial region and was more anterior

than the inhibitory populations (Figure 6I). Inh-9 was spatially en-

riched in the ZI and LHAs-db, and co-expressed Meis2. Inh-14

was enriched in a dorsal diagonal band that spatially overlapped

with Hcrt+ neurons (33% overlap) and co-expressed Gpr101 and

Galanin. Inh-18 was spatially dispersed in the LHA.

Slc17a6/Slc32a1 co-expressing populations

Our image volume included glutamate and GABA co-releasing

populations (Ex-12) in the EP (Wallace et al., 2017). 62% (742/

1188) of Slc17a6/Slc32a1 EP neurons co-expressed Sst (Fig-

ure S7A). We also identified a cluster of this dual neurotransmitter

cell type in the anterior part of the LHAd-db (Figures S7B–S7C).

Relationship of somatic RNA to protein expression

Weexamined the relationship of somatic RNA and protein detec-

tion. For this, we developed a method to combine immunofluo-

rescence (IF) with EASI-FISH (STAR Methods; Figures S7D and

S7E). We found that all neuropeptide expressing neurons de-

tected by IF also showed positive RNA signal with FISH (Figures

6J–6L). For neuropeptides that are well-localized to the soma

(MCH and HCRT) (Figure 6J and 6K), nearly all FISH-positive

neurons were also detected with IF (Figure S7F). For neuropep-
(G) scRNA-seq cluster corresponding to Ex-10 was subdivided into subclusters

(H) Oxt marks an Ex-10 subpopulation. Top: Spatial distribution of Ex-10 subpop

co-expression of Slc17a6 and Galanin (Gal) in the Oxt subpopulation. Scale bar:

(I) Fos enrichment in Hcrt neurons (Ex-2). *p < 0.05. Statistics: Table S1.

(J) Fos inNts subpopulations in ad libitum food andwater (AL) andwater-deprived

0.05. Statistics: Table S1.

(K) Image showing Fos expression in Inh-9 (Nts/Meis2) neurons (arrowheads on
tides that localize primarily to distal processes (TRH, SST and

NTS) (Figure 6L), we detected IF in the soma of some FISH-pos-

itive neurons (Figure S7F). We also found goodmRNA-to-protein

correspondence for the transcription factors (OTP, MEIS2) used

for LHA parcellation (Figures 6M and S7F). Thus, EASI-FISH can

be readily extended to evaluate the protein andmRNA content of

the same cells. This method is also compatible with multi-round

FISH following IF (STAR Methods and Figure 6N).

Somatic morphology in the LHA
We characterized the somatic morphological diversity in the LHA

(Figures 7A and 7B), using the accurate, automated 3D segmenta-

tionmasks generatedwithStarfinity.Pmch+ (3412± 76.1 mm3) and

Hcrt+ (3690 ± 40.6 mm3) neurons were the primary large neuronal

populations in this region. These neurons were �2.5-fold larger

in cell body volume than the average LHA neuron volume (average

excludingPmch+andHcrt+: 1533±3.5mm3) (Figure7C). Excluding

thePmch+ andHcrt+neurons,we found that theSlc17a6+ neurons

(1624± 6mm3) onaverage are nearly 250mm3 larger in volume than

Slc32a1+ neurons (1389± 3 mm3) (p< 0.0001). The somatic volume

was positively correlated with total RNA content, as indicated by

cytosolic DAPI staining (r = 0.93, p = 0) and Map1b expression

(r = 0.82, p = 0) (Figures S7G and S7H).

We also evaluated 3D somatic shape (Figures S7I and S7J)

and identified cells with themost extreme somatic shapes based

on their solidity and eccentricity (Figure 7D). This revealed a

higher fraction of irregular somatic shapes in Slc17a6+ neurons

(6%) compared to the Slc32a1+ neurons (2%) (Figures 7A and

7B). Neurons with irregular somatic shapes were enriched in

the LHAfl (Figure S7K).

Iterative refinement of cell type marker-genes
We found that the distribution of cell sizes in Ex-10 (Slc17a6/Gal)

had a long tail of large neurons (Figure 7E). Neurons in this cluster

were enriched in two subregions (LHAd-db and LHAfl-vl) (Fig-

ure 7F), with the large neurons primarily in the LHAfl-vl subregion.

This raised the possibility that this is a distinct but rare cell type.

To test this hypothesis, we subdivided the most similar

scRNA-seq cluster (seq-e9) and identified Oxytocin (Oxt) as the

top differentially expressed gene between the subdivided

scRNA-seq clusters (Figure 7G). To examine whether Oxt can

be used to separate this population from the mediodorsal

Slc17a6+/Gal+ subpopulation, we probed for Slc17a6, Gal and

Oxt with EASI-FISH in a new sample to independently validate

the existence of this population. Indeed,Oxt expression was de-

tected in a small group of neurons in the ventral lateral part of the

LHA. Consistent with our predictions, these neurons had large

cell bodies (3089 ± 140 mm3) and co-expressed Slc17a6 and

Gal (100%, 13/13) (Figure 7H). This demonstrated how spatial

and morphological measurements can facilitate the discovery
differentiated by Oxt expression.

ulation marked by Oxt expression. Scale bars: 100 mm. Bottom: inset showing

25 mm.

(WD) animals. Numbers indicate neurons from each cell type in each group. *p <

left). Scale bar: 100 mm. Right: representative Inh-9 neuron. Scale bar: 10 mm.
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of rare cell types with unusually large cell bodies, using a limited

number of marker-genes.

Cell-type-specific expression of Fos
Expression of the immediate early gene, Fos, is associated with

plasticity and changes in neuronal activity. We noticed basal

expression of Fos in Hcrt neurons in scRNA-seq datasets (Fig-

ure S7L) which was confirmed with EASI-FISH (Figure 7I). This

may be associated with the broadly tuned arousal functions of

these neurons (Mileykovskiy et al., 2005) in the context of exper-

imental handling.Hcrt– clusters showed low Fos expression, and

we went on to use EASI-FISH to examine enrichment of Fos in

the LHA following behavioral perturbation.

The LHA is involved in multiple motivated behaviors, including

thirst, which has been localized to a broad set of Nts+ neurons

that express Fos in response to dehydration (Brown et al.,

2015; Brown et al., 2019) and selectively elicit water-drinking

when activated (Kurt et al., 2019). Because we identified 4 Nts

populations by EASI-FISH (1 excitatory and 3 inhibitory), we per-

formed a separate, targeted analysis comparing mice with ad li-

bitum (AL) food and water to water-deprived (WD) mice to deter-

mine which of these Nts cell types was involved in the response

to dehydration. Fos was significantly elevated in WD mice in 1

out of the 4 Nts+ cell types, Inh-9 (Nts/Meis2) (Figure 7J), which

is located selectively in the LHAs-db (Figure 6I). In contrast, four-

teen additional clusters that could be assigned from the marker-

genes used for this experiment did not show statistically signifi-

cant Fos enrichment (Figure S7M). The identification of a single

Nts+ subpopulation located in a specific LHA compartment

shows that the molecularly defined cell types and subregions

predicted by our analysis have distinct response profiles to

physiological perturbations.

DISCUSSION

We report a resource that includes methods and a turnkey

computational analysis pipeline for multi-round FISH datasets

in thick sections of brain tissue. EASI-FISH enables quantitative

in situmeasurements of gene expression with cellular resolution

using commercial laboratory equipment and provides single

RNA puncta counts, detailed spatial information, and morpho-

logical characteristics of the underlying cells.

EASI-FISH is optimized for multi-round, multiplex FISH anal-

ysis of all cells within continuous tissue volumes that are thicker

(300 mm) than what has been achieved with previous methods.

This thickness is suitable for aligning samples from different

subjects. We found that volumetric mapping of neuronal gene

co-expression in brain tissuewas critical for identifying the struc-

tural subdivisions that we discovered in the LHA across multiple

animals. In addition, use of thick samples facilitated LHA parcel-

lation that showed inter-subject consensus. A 300-mm axial

depth is also consistent with tissue dimensions for other neuro-

science data collection modalities that could potentially be com-

bined with EASI-FISH, for example brain slice recordings or

in vivo two-photon calcium imaging (Xu et al., 2020). Alternative

methods that are constrained to thin tissue samples for FISH

probe penetration or imaging and analysis face the challenge

of sub-sectioning and aligning many adjacent sections to obtain
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a volumetric perspective. EASI-FISH is likely to be valuable for

mapping the molecular characteristics of continuous brain re-

gions as well as in experimental pipelines that integrate mea-

surements in thick tissue samples (including from living animals)

with post hoc FISH.

We used EASI-FISH to characterize the molecular, spatial,

morphological, and functional diversity of LHA neurons. We

discovered a molecularly defined subregional LHA parcellation

into which distinct cell types were selectively localized. The

EASI-FISH pipeline generated high-quality quantitative spatial

gene expression data, which enabled a machine learning

approach to identify LHA subregions based on combinations

of four marker-genes. This approach also recapitulated cortical

lamination based on only 4 genes. Past efforts at parcellation

of the rat LHA have not elucidated most of the regions that we

examined (Geeraedts et al., 1990; Hahn, 2010; Hahn and Swan-

son, 2010); for example, as with prior work in the rat brain, we

found evidence for a suprafornical cell dense zone (Hahn and

Swanson, 2010) in themouse. However, consideration of molec-

ularly defined cell type information subdivided this suprafornical

cell density into distinct, molecularly defined laminar structures

that extended laterally. More generally, molecularly defined cell

types are increasingly appreciated as a fundamental unit of brain

organization (Zeng and Sanes, 2017). Thus, brain parcellation

should incorporate organizational principles that are reliant on

cell type distributions, which requires detailed spatial analysis

of cellular multi-gene co-expression relationships.

High-quality cell segmentation with the EASI-FISH pipeline al-

lowed us to examine the relationship of marker-gene expression

to cell size and somaticmorphology in the LHA.Withmorpholog-

ical analysis of LHA cell types, we demonstrated that Ex-10 (Th/

Gal) could be subdivided to reveal an Oxt-expressing subpopu-

lation that defined a spatially segregated set of large magnocel-

lular neurons. We also used EASI-FISH to refine the diverse Nts+

neuron population in the LHA, which we showed comprises four

subtypes, and only a single population, Inh-9, was modulated by

water deprivation. Thus, molecularly defined neuron classifica-

tions in the LHA that are derived from gene co-expression rela-

tionships can specify groups of neurons with distinct cell size

or functional tuning.

Our analysis of the LHA highlights the extent of spatial diversity

in cell types and axonal inputs that should be considered when

investigating LHA function. Thus, detailed examination of LHA

function will be dependent on convenient and robust multi-

gene co-expression analysis. EASI-FISH fills an important gap

in neural circuit research by facilitating a seamless extension of

cell-type analysis generated in dissociated neurons to experi-

mental modalities that also require information about in situ

anatomical localization. This will lower the barrier to make prog-

ress toward extending the molecular revolution in neuroscience

to functional and systems analysis, which is essential for under-

standing the interplay between neural coding and molecular

properties in behavior and disease.

Limitations of study
To prioritize ease of use, we chose to use non-barcoded sequen-

tial gene probing, which simplifies experimental design but limits

gene number. Spot-to-spot alignment (Moffitt et al., 2018; Shah
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et al., 2017) is likely possible using this method, which would

facilitate barcoding methods and increase gene number,

although this would also increase imaging complexity and anal-

ysis requirements.

The molecularly defined subregions as well as the distribution

of cell types described in this study only covered a limited portion

of the LHA, which spans�3mmanterior to posterior; thus, future

work will extend these methods to the entire LHA. Moreover,

additional studies are needed to establish the causal contribu-

tions of the LHA subregions and molecularly defined cell types

to behavior and physiology.
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Zwan, J., Häring, M., Braun, E., Borm, L.E., La Manno, G., et al. (2018). Molec-

ular Architecture of the Mouse Nervous System. Cell 174, 999–1014.e22.

Zeng, H., and Sanes, J.R. (2017). Neuronal cell-type classification: challenges,

opportunities and the path forward. Nat. Rev. Neurosci. 18, 530–546.
Cell 184, 6361–6377, December 22, 2021 6377

http://refhub.elsevier.com/S0092-8674(21)01339-8/sref46
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref46
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref46
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref47
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref47
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref47
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref47
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref47
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref48
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref48
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref49
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref49
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref49
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref50
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref50
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref51
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref51
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref51
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref51
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref52
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref52
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref52
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref52
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref53
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref53
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref53
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref53
https://doi.org/10.1016/j.neuron.2021.09.020
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref55
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref55
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref55
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref56
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref56
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref56
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref56
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref57
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref57
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref57
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref58
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref58
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref58
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref59
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref59
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref59
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref60
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref60
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref60
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref61
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref61
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref61
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref62
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref62
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref63
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref63
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref63
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref64
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref64
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref64
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref64
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref65
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref65
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref65
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref65
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref66
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref66
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref66
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref66
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref67
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref67
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref67
https://info.vizgen.com/mouse-brain-map?submissionGuid&tnqh_x003D;f1a3404d-97eb-4d37-89e3-2e0ff6cce452
https://info.vizgen.com/mouse-brain-map?submissionGuid&tnqh_x003D;f1a3404d-97eb-4d37-89e3-2e0ff6cce452
https://info.vizgen.com/mouse-brain-map?submissionGuid&tnqh_x003D;f1a3404d-97eb-4d37-89e3-2e0ff6cce452
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref69
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref69
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref69
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref69
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref70
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref70
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref71
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref71
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref71
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref72
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref72
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref72
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref73
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref73
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref73
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref73
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref75
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref75
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref75
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref76
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref76
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref76
https://doi.org/10.1126/science.abb2494
https://doi.org/10.1126/science.abb2494
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref78
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref78
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref78
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref78
https://doi:10.1093/gigascience/giy083
https://doi:10.1093/gigascience/giy083
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref80
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref80
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref80
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref81
http://refhub.elsevier.com/S0092-8674(21)01339-8/sref81


ll
OPEN ACCESS Resource
STAR+METHODS
KEY RESOURCES TABLE
Reagent or resource Source Identifier

Antibodies

Anti-MCH Atlas Antibodies Cat. # HPA046055; RRID:AB_2679517

Anti-Orexin A (KK09) Santa Cruz Cat. # sc-80263; RRID:AB_1126868

Anti-OTP Thermo Fisher Cat. # PA531513; RRID:AB_2548986

Anti-MEIS2 Atlas Antibodies Cat. # HPA003256; RRID:AB_1079356

Anti-pro-TRH Millipore Sigma Cat. # ABN1658; RRID:AB_2884885

Anti-SST Atlas Antibodies Cat. # HPA019472; RRID:AB_1857360

Anti-NTS Phoenix Pharmaceuticals Inc Cat. # H-048-03

Anti-VGLUT2 Synaptic Systems Cat. # 135 416; RRID:AB_2619824

Anti-VGAT Synaptic Systems Cat. # 131 011; RRID:AB_887872

Secondary antibody HCR probe (B4), Donkey

Anti-Rabbit

Molecular Instruments N/A

Chemicals, peptides, and recombinant proteins

Melphalan Cayman Chemicals Cat. # 16665

Acryloyl-X, SE Thermo Fisher Cat. # A20770

Label-IT Amine Mirus Bio Cat. # MIR 3900

Ribonucleoside Vanadyl Complex NEB Cat. # S1402S

RNase-Free DNase Set (50) QIAGEN Cat. # 79254

Proteinase K NEB Cat. # P8107S

DAPI Sigma Cat. # D9542

Janelia Fluor 669, SE Tocris Cat. # 6420

N,N,N0,N0-Tetramethyl ethylenediamine Sigma Cat. # T22500

Ammonium persulfate Sigma Cat. # A3678

Acrylamide solution Sigma Cat. # A4058

4-Hydroxy-TEMPO Sigma Cat. # 176141

N, N’-Methylenebisacrylamide Sigma Cat. # M7279

Acrylamide Sigma Cat. # A9099

Acrylic Acid Sigma Cat. # 147230

DMSO Sigma Cat. # 570672

MOPS buffer Sigma Cat. # M1254

20x SSC Thermo Fisher Cat. # AM9763

Nuclease-free water Thermo Fisher Cat. # AM9932

NaOH Fisher scientific Cat. # SS267

Poly-L-Lysine Pelco Cat. # 18026

DEXTRAN SULFATE 50%, 100ML Sigma Cat. # S4030

Formamide Fisher scientific Cat. # BP227-100

PBS Fisher scientific Cat. # BP24384

RNase away/DNase away Fisher scientific Cat. # 10328011

Photo-Flo 200 EMS Cat. # 74257

RNase-free BSA Thermo Fisher Cat. # AM2616

Critical commercial assays

QIAquick Nucleotide Removal Kit (50) QIAGEN Cat. # 28304

Deposited data

LHA scRNA-seq (10x Genomics) Mickelsen et al., 2019 GEO: GSE125065

LHA scRNA-seq (DropSeq) Rossi et al., 2019 GEO: GSE130597

(Continued on next page)
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Continued

Reagent or resource Source Identifier

LHA scRNA-seq (Smart-SCRB) this study GEO: GSE167293

EASI-FISH pipeline example image data this study https://janelia.figshare.com/collections/

EASI-FISH_analysis_pipeline/5276708

LHA EASI-FISH data this study https://janelia.figshare.com/articles/dataset/

EASI-FISH_enabled_spatial_analysis_of_

molecular_cell_types_in_the_lateral_

hypothalamus/13749154

Starfinity training data and trained model for

3D segmentation

this study https://janelia.figshare.com/articles/dataset/

Ground-truth_cell_body_segmentation_used_

for_Starfinity_training/13624268

Experimental models: Organisms/strains

Mouse: C57BL/6 Jackson Laboratory JAX stock #000664

Mouse: Agrp-IRES-Cre Jackson Laboratory JAX stock #012899

Mouse: Ai6 Jackson Laboratory JAX stock #007906

Oligonucleotides

HCR probes Molecular Instrument Table S5

HCR Amplifier B1 Molecular Instrument N/A

HCR Amplifier B2 Molecular Instrument N/A

HCR Amplifier B3 Molecular Instrument N/A

HCR Amplifier B4 Molecular Instrument N/A

HCR Amplifier B5 Molecular Instrument N/A

Software and algorithms

EASI-FISH pipeline this study https://zenodo.org/record/5652239;

https://github.com/JaneliaSciComp/multifish

Starfinity 3D segmentation this study https://github.com/stardist/stardist/tree/refinement

BigStream registration pipeline this study https://github.com/GFleishman/bigstream

Stitching-Spark stitching pipeline Gao et al., 2019 https://github.com/saalfeldlab/stitching-spark

Airlocalize Lionnet et al., 2011 https://github.com/timotheelionnet/AIRLOCALIZE/

Custom code this study https://zenodo.org/record/5658557;

https://github.com/multiFISH/EASI-FISH

Seurat 4.0.1 Stuart et al., 2019 Satijalab.org; RRID: SCR_016341

Ilastik Ilastik https://www.ilastik.org/

MATLAB Mathworks https://www.mathworks.com/products/

matlab.html

Fiji ImageJ https://imagej.net/software/fiji/

Python v3.7 Python.org; RRID: SCR 008394

Nextflow Di Tommaso et al., 2017 https://www.nextflow.io/

Greedy registration (Yushkevich et al., 2016) https://github.com/pyushkevich/greedy

n5-viewer Saalfeld lab https://github.com/saalfeldlab/n5-viewer

Napari (Napari contributors, 2019) https://napari.org/

Other

Zeiss Lightsheet Z.1 microscope Zeiss https://www.zeiss.com/microscopy/us/

products/imaging-systems/light-sheet-

microscope-for-lsfm-imaging-of-live-

and-cleared-samples-lightsheet-7.html

Press-to-Seal Silicone Isolator with Adhesive Thermo Fisher Cat. # P24743

8mm glass coverslip Harvard Apparatus Cat. # BS4 64-0701

Zeiss Lightsheet Z.1 imaging holder Svoboda Lab and Janelia

Experimental Technology

https://www.janelia.org/open-science/

zeiss-lightsheet-z1-sample-holder
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to Scott Sternson (ssternson@health.ucsd.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
All EASI-FISH data generated in this study have been deposited at figshare (https://janelia.figshare.com/articles/dataset/

EASI-FISH_enabled_spatial_analysis_of_molecular_cell_types_in_the_lateral_hypothalamus/13749154). The single cell RNA-seq

dataset generated in this study has been deposited to GEO (Gene Expression Omnibus, https://www.ncbi.nlm.nih.gov/geo/) with

accession number GSE167293.

Software, pipeline, and custom code generated for EASI-FISH data processing are available on GitHub (https://zenodo.org/

record/5652239, https://zenodo.org/record/5658557; for active updates: https://github.com/JaneliaSciComp/multifish and

https://github.com/multiFISH/EASI-FISH/) with detailed instructions. Example dataset and Starfinity training data and model used

in this manuscript have been deposited at figshare (https://janelia.figshare.com/collections/EASI-FISH_analysis_pipeline/5276708).

Any additional information required to reanalyze the data reported in this paper is available from the lead contacts upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
Adult mice were used for all experiments. Specific breakdown of age/sex are given for each experiment in the corresponding

methods description. For single-cell RNA sequencing, male Agrp-IRES-Cre 3 Ai9 mice (age 6-8 weeks) were used. For all EASI-

FISH experiments, C57BL/6J male mice (8 weeks old) were used. All methods for animal care and use were conducted according

to National Institutes of Health guidelines for animal research and approved by the Institutional Animal Care and Use Committee

(IACUC) at Janelia Research Campus. In all casesmicewere housed in a 12 h light/12 h dark cycle and had ad libitum access towater

and chow diet unless otherwise noted.

METHOD DETAILS

Single-cell RNA sequencing
The single-cell RNA sequencing performed by us was focused on the suprafornical, tuberal LHA and its surrounding areas (additional

datasets that we combinedwith ours included a larger volume of LHA). For single cell dissociation and collection, we used transgenic

animal Agrp-IRES-Cre 3 Ai9 crosses, where the tdTomato-labeled AGRP neurons extend a prominent set of axonal projections to

the suprafornical region of the LHA (Betley et al., 2013) and provide a useful signal for visually guided dissection of the targeting brain

region. The manual sorting procedure to isolate non-fluorescent cell bodies from micro-dissected brain slices was similar to that

previously described in (Hempel et al., 2007). Briefly, we sectioned 300 mm coronal slices from male Agrp-IRES-Cre 3 Ai9 mice

(age 6-8 weeks) and used the tdTomato fluorescence signal from the AGRP neuron axon bundle terminal in the LHA to identify

the boundaries of the LHA and then manually dissected with spring scissors. The dissected tissue sections were then subject to pro-

tease digestion (0.5 mg/mL Protease (Sigma), 1hr at room temperature), after which cells were dissociated through gentle pipetting

until a single-cell suspension is obtained based on visual inspection using a microscope. Dissociated neurons from 7 animals were

pooled and intact neurons were manually transferred into individual wells based on size. Each sorted single cell was lysed with 3 ml

lysis buffer (0.2% Triton X-100 (Sigma) and 0.1 U/ml RNase inhibitor (Lucigen)) and cDNA libraries were prepared using the Smart-

SCRB chemistry as described previously (Cembrowski et al., 2018; Xu et al., 2020). Barcoded cDNA libraries were then pooled

and sequenced on a NextSeq 550 high-output flowcell with 27 bp in read 1 to obtain the barcode and UMI, and 125 bp in read 2

for cDNA. PhiX control library (Illumina) was spiked in at a final concentration of 15% to improve color balance in read 1. Libraries

were sequenced to an average depth of 135,025 ± 38,401 (mean ± SD) reads per cell.

Sequencing alignment was performed as previously described (Gur et al., 2020). Sequencing adapters were trimmed from the

sequencing reads with Cutadapt v2.10 (Martin, 2011) prior to alignment with STAR v2.7.5c (Dobin et al., 2013) to the M. musculus

GRCm38.90. genome assembly from Ensembl (ensembl.org). Gene counts were generated using the STARsolo algorithm

(https://github.com/alexdobin/STAR/blob/master/docs/STARsolo.md). Gene counts for the subset of barcodes used in each library

were extracted using custom R scripts (https://zenodo.org/record/5662268).

EASI-FISH protocol summary
A brief description of EASI-FISH procedure is provided, followed by the detailed protocol below. First, RNA in tissue was preserved

via covalent attachment to the hydrogel mesh. To do this, the alkylating agent, melphalan was first reactedwith the succinimidyl ester

of 6-((Acryloyl)amino) hexanoic Acid (Acryloyl-X, SE) to produce MelphaX. Next, MelphaX was applied to tissue to react with nucle-
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otides including RNA, functionalizing them for incorporation into a tissue-gel network by polymerization of the acryloyl ‘‘tails’’ (Fig-

ure 1D). Tissue was then embedded into the polyacrylate gel, followed by proteolytic digestion. We found that inclusion of the ionic

detergent, sodium dodecylsulfate (SDS), and increased tissue expansion through reduced salt concentration in the protease diges-

tion step improved optical clearing and reagent penetration through thick tissue volumes. Proteolytic digestion and expansion (23 in

each dimension) reduces tissue autofluorescence (95% reduction) and light scattering, yielding a compositematerial that is refractive

index-matched for water immersion objective lenses. For detection of mRNA transcripts, tissue-gel samples were hybridized with

FISH probes bearing HCR initiators, signal amplified with HCR hairpins and imaged. DNase I digestion was used for round-to-round

stripping followed by cytosolic DAPI staining to generate the cytosolic staining pattern for stitching, registration, and segmentation.

With 23 expansion, acquiring a native sample volume of 1 mm3 1 mm3 0.3 mm requires collecting an image 8-times this volume.

Selective plane illumination fluorescence microscopy (SPIM or ‘light sheet microscopy’) avoids photobleaching of out-of-focus fluo-

rophores and accelerates image acquisition�100-fold compared with confocal microscopy and thus provides a decisive advantage

for rapid imaging of such large tissue volumes at high resolution.

Reagents and chemicals
MelphaX

Melphalan (Cayman Chemicals, 16665) was dissolved to 2.5 mg/ml in anhydrous DMSO (Sigma). Acryloyl-X, SE (Thermo Fisher,

20770) was dissolved to 10mg/mL in anhydrous DMSO. 4 parts ofMelphalan stockwere combinedwith 1 part of Acryloyl-X, SE stock

and reacted overnight with shaking at room temperature to make MelphaX (2 mg/ml). Aliquots were stored at�20�C in a desiccated

environment and used at 1 mg/ml by diluting in MOPS buffer (20 mM, pH 7.7).

Sodium Acrylate (4M)

We made sodium acrylate by reacting acrylic acid (14.6 M; Sigma, 147230) with NaOH. Briefly, in a fume hood, acrylic acid (5.5 ml)

wasmixedwith nuclease free water (4.5ml). 10MNaOH (7.2ml) (Fisher Scientific) was added gradually to prevent excessive heating.

Then 1M NaOH (Fisher Scientific) was added dropwise until the pH reached 7.6-7.8. Water was added to reach a final volume

of 20 ml.

Stock-X

4MSodiumAcrylate (4.6ml), 50%Acrylamide (w/v in water, 1ml) (Sigma, A9099), 2%N, N’-Methylenebisacrylamide (1.5ml) (Sigma,

M7279), 5 M NaCl (8 ml), 10 3 PBS (2 ml), Nuclease Free Water (1.7 ml). Aliquots were stored at �20�C.
ExM gel solution

Before gelation, Stock-X was mixed with 0.5% 4-Hydroxy-TEMPO (Sigma, 176141), 10% TEMED (Sigma, T22500) and 10% APS

(Sigma, A3678) at a ratio of 94:2:2:2.

Proteinase K digestion buffer

50 mM Tris-HCl (pH 8), 50 mM NaCl, 1 mM EDTA, 0.5% Triton X-100 and 0.3% SDS.

DNase I Buffer

10 mM Tris-HCl (pH 8), 2.5 mM MgCl2, 0.5 mM CaCl2.

Poly-L-Lysine coating solution

Photo-Flo 200 (3.2 ml, EMS 74257) was added to Poly-L-Lysine solution (1.6 ml. Pelco, 18026) to make the Poly-L-Lysine coating

solution.

HCR hairpin conjugation with custom fluorophores

We conjugated the photostable fluorophore JF669, NHS (Tocris, 6420) to amine-modified hairpin oligos fromMolecular Instruments.

Briefly, 100 mM amine-modified hairpin oligos (h1 and h2) (5 ml each) were air-dried with SpeedVac for 30 min. Dried oligos were

dissolved in 0.1 M sodium bicarbonate (3 ml) (pH 8-9). JF669, NHS (0.1 mg) was dissolved in DMSO (2 ml) and reacted with

amine-modified oligos overnight in the dark at room temperature. Excess JF669, NHS was removed with QIAquick Nucleotide

removal kit (QIAGEN, 28304) and the conjugated JF669 hairpins were reconstituted with nuclease free water to a final concentration

of 60 ng/ml (�3 mM).

Tissue fixation and preparation
C57BL/6J male mice (8 weeks old) were used for all FISH experiments described in this study. Animals were anesthetized with iso-

flurane and perfused with RNase-free PBS (15ml) followed by ice-cold 4% paraformaldehyde (PFA) (50 ml). Brain tissue was

dissected and fixed in 4% PFA overnight before sectioning on a vibratome. Brain coronal slices (300 mm) were sectioned and stored

in 70%ethanol at 4�C for up to 6months. For the lateral hypothalamus experiment, LHA region (�2.53 4mm) around Bregma�1.5 to

�1.1 was cut out using anatomical landmarks as boundaries, including the mammillothalamic tract (mtt), zona incerta (ZI), fornix and

optic tract. For ease of orientation and optimal imaging, the tissue was cut as a rectangle. An RNase-free paintbrush was used for

tissue handling.

RNA anchoring, gelation, and Proteinase K digestion
The tissue slice was rehydrated in PBS at room temperature (RT) (23 15min) and incubated inMOPS buffer (20 mM, pH 7.7, 30min).

Tissue was incubated overnight (37�C) in MOPS buffer (50 ml) with 1 mg/ml MelphaX and 0.1mg/ml Acryloyl-X, SE. The next day, tis-

sue was rinsed in PBS (23 5 min) and placed in a 9 mmwide3 0.5 mm deep gasket (Invitrogen) on a glass slide that was previously
Cell 184, 6361–6377.e1–e14, December 22, 2021 e4
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coated with Poly-L-Lysine (1 ml) and allowed to dry. Gel solution was freshly made (see recipe above) and kept on ice. Tissue was

equilibrated with gel solution (40 ml, 3 3 10 min) at 4�C. A coverslip was used to seal the gasket and gel was allowed to form at

37�C for 2 hours. The coverslip and gasket were then removed to recover the tissue-gel. The tissue-gel was trimmed to a rectangle

shape, with a corner cut to help with orientation. Tissue-gel samples were then transferred into a 2 mL Eppendorf tube and digested

overnight (37�C) in Proteinase K buffer (750 ml) with 7.5 ml of 800 U/ml Proteinase K (NEB, P8107S). After digestion, samples were

trimmed again and washed in PBS (4 3 15 min). Hands-on time for this step is around 30 min.

DNase I digestion
Tissue-gel samples were equilibrated in DNase I buffer (750 ml) for 30 min and then incubated with RNase-free DNase I (2.7 Kunitz

units/ml, 50 ml) (QIAGEN) in DNase I buffer (450 ml) at 37�C for 2 h. After DNase I digestion, samples werewashed in PBS (43 15min) to

remove DNase I. A stronger DNase I treatment (2 3 2 h) was performed before the first round of FISH to completely digest

nuclear DNA.

In situ Hybridization and HCR
For hybridization, tissue-gel samples were first equilibrated in hybridization buffer (500 ml) for 30 min at 37�C. Samples were then hy-

bridized with probe sets (1 mM each probe, 3ml) in hybridization buffer (300 ml) overnight at 37�C. The next morning, samples were

washed in probe wash buffer (23 15 min, then 33 30 min), followed by PBS (63 30 min) at 37�C. At this stage, hybridization chain

reaction (HCR) can be carried out immediately. Alternatively, samples can be left in PBS overnight at room temperature for HCR the

next day or stored in 4�C for longer storage. For HCR, samples were first equilibrated in amplification buffer (500 ml) for 30 min. Hair-

pins (3 mM) (conjugated to AF488, AF546, JF669) were heated and snap-cooled in a PCR thermocycler (95�C for 90 s then cooled at

room temperature for 30min). To initiate HCR, hairpins h1 and h2 weremixed and diluted to 30 nM in 300 ml fresh amplification buffer.

Samples were then left in the dark for HCR reaction at room temperature for 3 h. After HCR, samples were first washed in 53 SSCT

(53 SSC + 0.1% Tween) (23 30min), then washed in 0.53 SSCT (0.53 SSC + 0.1% Tween) (23 30min) and stored in 0.53 SSC at

4�C before imaging. All HCR v3.0 probe and hairpin oligos were purchased fromMolecular Instruments.Gad1HCR v3.0 probes used

for assessing the detection efficiency of EASI-FISH were designed based on (Choi et al., 2018) and purchased from IDT.

Image acquisition, sample handling, and multiplexing
Although EASI-FISH samples can be imaged with traditional wide-field and confocal microscopes, bleaching and poor signal-to-

noise ratio (SNR) would be problematic for thick tissue specimens. Thus, selective plane illumination microscopy is preferred. In

this study, all samples were imaged on a Zeiss Lightsheet Z.1 microscope. A 203 water-immersion objective (20x/1.0 W Plan-Apo-

chromat Corr DICM27 75mm, RI = 1.33) was used for imaging with 13 zoom. Single-side illumination was used to reduce light expo-

sure and imaging time. Images were collected at 0.233 0.23 mm pixel resolution (post-expansion) and 0.42 mm z step size with dual

camera detection of two channels in each of two tracks: the 488 nm and 669 nm channels were acquired together, followed by the

405 nm and 546 nm channels. For large volume imaging, each image tile was 19203 1920 pixels (438.5 mm3 438.5 mm, post-expan-

sion) in size with around 1500 z-slices, with overlap between tiles set to 8%. For imaging of the lateral hypothalamus samples, zona

incerta, the fornix and optic tract were used to guide selection of field of view (FOV). 4 3 4 tiles were taken from the LHA tissue-gel

sample (usually 2-3mm in x and y dimension). Imaging of sample volumes described above (0.83 0.83 0.3 mm pre-expansion, 23

expanded) with 4 3 4 tiles (438.5 mm 3 438.5 mm lateral dimension, �1500 z-slices each tile) and 4 channels (in 2 tracks) took

2.5 hours.

Before imaging, samples were stained in PBS with 5 mg/ml DAPI (2 3 30 min). At this concentration and in the absence of DNA,

DAPI stains the RNA in the cytoplasm. Samples were mounted to a Poly-L-Lysine coated 8mm glass coverslip (Harvard Apparatus)

that was glued to a custom-made plastic holder (https://www.janelia.org/open-science/zeiss-lightsheet-z1-sample-holder) and

imaged in PBS (Expansion factor: 2 3 ). After image acquisition the probes and HCR products were removed using DNase I (see

above) with samples attached to the holder. To remove samples from the holder for re-hybridization, they were incubated at

room temperature in 10% dextran sulfate (500 ml) (Fisher Scientific) in PBS for 30 min. A paintbrush can be used to assist with gel

removal. Each round of EASI-FISH includes DNase I digestion, in situ hybridization, HCR amplification and imaging, with 1-2 hours

of hands-on time. Note that all units discussed in this paragraph regarding pixel size and image size are in post-expansion units (in

contrast to our convention in the rest of the paper where scales are usually in pre-expansion units, unless otherwise noted).

Notes on Expansion factor, tissue thickness, and imaging conditions
Expansion factor

For the current application, EASI-FISH imaging was performed on a 23 expanded specimen, which offered suitable tissue clearing

and acceptable data size. By reducing salt concentration with 0.053 SSC, EASI-FISH specimens can be expanded up to 33 , which

further improves optical resolution but also increases physical sample size, imaging time, and data size.

Tissue thickness

We have successfully used EASI-FISH in tissue slices up to 400 mm thick (pre-expansion). Further modification of the procedure (e.g.,

longer incubation times) may enable application of EASI-FISH in thicker tissue sections. However, substantially thicker samples

would increase data size after expansion andmay require the use of longer working distance, lower NA objective lenses, whichwould
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reduce imaging resolution for spot detection. Larger continuous volumes can also be achieved by serial thick tissue sections, which

may be aligned based on continuity of spatio-molecular domains.

Imaging condition

We found that HCR spots were susceptible to light-induced fragmentation, producing mobile spots of reduced brightness (wigglers).

Wigglers were difficult to detect without time-resolved imaging and led to false positive spots outside of cell bodies. Carefully con-

trolling the light dose (reduced laser power and exposure time) alleviated light-induced fragmentation of HCR spots. Anti-fade com-

pounds, such as p-phenylenediamine (PPD) and DABCO also reduced spot fragmentation (Table S2 and Video S1). However, we

noted that antifade compounds dramatically increased the bleaching rate of one of the commercially available HCR hairpin fluoro-

phores (AF546) (Figure S1H).

Combining immunofluorescence (IF) detection with EASI-FISH
We extended the EASI-FISH method to allow for co-detection with immunofluorescence (IF). 100 mm tissue sections were used due

to limitations of antibody penetration. As described above, C57BL/6J male mice (8 weeks old) were perfused with RNase-free PBS

(15 ml) followed by ice-cold 4% paraformaldehyde (PFA) (50 ml). Brain coronal slices (100 mm) were sectioned and stored in 70%

ethanol at 4�C. The LHA region was identified as described above and rehydrated in PBS. Immunofluorescence was performed

by first permeabilizing with 0.5% Triton X-100 in PBS (15 min) at room temperature, followed by incubation in blocking buffer con-

taining 1%RNase-free BSA (Thermo Fisher, AM2616) and RVC (ribonuclease inhibitor, NEB, S1402S) in PBS with 0.1% Triton X-100

(1 h) at room temperature. Tissue sliceswere then incubatedwith primary antibody (1:200 in blocking buffer, O/N) on a shaker at room

temperature. Tissue slices were washed with PBST (0.1% Tween-20 in PBS) (4 3 30 min). Secondary antibody (1:500 in blocking

buffer, O/N) was applied on a shaker at room temperature, followed by washes in PBST (0.1% Tween-20 in PBS) (43 30 min). After

IF staining, RNA and protein (including antibodies) were anchored with MelphaX (1 mg/ml) and AcX (0.2 mg/ml) overnight at 37�C,
embedded in gel, and proteinase K treated as described above, followed by probe hybridization and HCR. For IF combined with

multi-round FISH, an HCR initiator-labeled-secondary antibody (Molecular Instruments) was used (antibody signal was amplified

together with FISH). After the first-round imaging of IF and FISH, both FISH signal and amplified IF signal were removed with DNase

I, followed by another round of FISH as described above. Thismethodworkswell to preserve both IF and FISH signals as indicated by

IF signals before and after EASI-FISH (Fig.S7D) and mRNA transcript counts with or without IF (Figure S7E).

For immunofluorescence detection of neuropeptides that localize primarily to distal processes (TRH, SST and NTS) (Dubé and Pel-

letier, 1979; Horjales-Araujo et al., 2014; Kahn et al., 1980), intracerebral colchicine injection (10 mg in 500 nl) (Brown et al., 2019) was

performed on C57BL/6J male mouse (8 weeks old). Tissue was collected 48 h later and processed as described above.

Fos activity during water deprivation
C57BL/6J male mice (8 weeks old) were acclimated for three days before the start of the experiment. On the day of the experiment,

animals either had ad libitum (AL) access to food and water (home-cage, n = 2) or the water bottle was removed for 24 h starting at 10

am (WD, n = 3). Precautions were taken to eliminate perturbation and noise in the animal roomwhere this experiment was performed.

Before and after the experiment, animal bodyweight and food intakeweremonitored. Mice were perfused the nextmorning, followed

by brain dissection and sectioning as described above. Four rounds of EASI-FISH were performed on anatomically matched brain

slices from these animals to allow for detection of 10 cell type markers relevant for identifying Nts cell types as well as anatomical

parcellation markers and Fos (Fos, Otp, Meis2, Nts, Slc17a6, Slc32a1, Tac1, Tac2, Gpr101, Hcrt, Sst).

QUANTIFICATION AND STATISTICAL ANALYSIS

scRNA-Seq analysis and marker-gene selection for EASI-FISH
Analysis of the single-cell RNA sequencing data, including filtering, variable gene selection, dimensionality reduction and clustering

was performed with Seurat (v2.3.4) (Butler et al., 2018; Satija et al., 2015) in R (v3.4.3). First, cell doublets/multiplets and low-quality

cells were filtered based on the total number of detected genes (1,500-7,500), relative abundance of mitochondrial transcripts (per-

cent.mito < 0.055) and number of uniquemolecular identifiers (nUMI) per cell (< 23 105) respectively. Genes expressed in less than 3

cells were also removed. The resulting dataset consisted of 1,507 cells and 17,535 genes. The filtered dataset was then log-normal-

ized and scaled, while regressing out the effects of latent variables including nUMI, and percent.mito. Next, we performed principal

component analysis (PCA) and used the first 31 principal components for downstream analysis. For clustering, we used the graph-

based clustering approach implemented in Seurat, with the original Louvain algorithm and 10 iterations. Non-neuronal cells were

identified by expression of non-neuronal markers (Aqp4, Olig2, Opalin, Pdgfra, Ctss, Flt1, etc.) and absence of neuronal markers

(Snap25, Syp, Tubb3, Map1b, etc.) and then removed from the dataset before further analysis.

The remaining 1,425 cells were processed similarly to what was described above and 4 neuronal cell types were identified, whose

preliminary identities were assigned based on unique expression of enriched genes: Group 1 (70%, 998 cells) consisted primarily of

cells with high levels of the neuropeptideHcrt, Group 2 (15%, 214 cells) was a heterogeneous population best characterized by com-

mon expression of Sparcl1, Group 3 (10%, 143 cells) contained a high percentage of cells strongly expressingNts, and Group 4 (5%,

67) was defined by very high levels of Pmch. Assessment of differential gene expression between neuronal cell types was performed
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using the FindAllMarkers function in Seurat (Wilcoxon rank sum test, logfc.threshold = 0.55, min.pct = 0.25), with p values adjusted

based on the Bonferroni correction. The full list of enriched genes for each major neuronal subclass is provided in Table S4.

To identify marker-genes for EASI-FISH, we started with the list of differentially expressed genes as outlined in Table S4. We

applied a series of selection criteria designed to allow classification of a maximum number of unique cell types using the fewest num-

ber of genes possible. As such, in addition to limiting our search to genes with an adjusted p value cutoff of at least 0.05 and an

average log-fold change of 0.55 or over, we also specifically selected markers with as close to binary ‘‘on/off’’ expression patterns

in the cell type of interest as possible, based on high percentage of marker-positive cells in the target population compared to low

percentage of marker-positive cells outside the target population (displayed as pct.1 and pct.2 in Table S4, respectively). While not

explicitly used as a limiting factor for the selection of marker-genes in this experiment, we found that a value of 0.4 for the ratio of

minimum difference in the fraction of detection between the two groups to be an informative rubric for aiding in selection of

marker-genes with close to binary characteristics. We also looked for genes that could further split the Hcrt and Pmch neurons

as they are well known neuropeptide secreting neurons with important functions. Using these parameters, alongside manual inspec-

tion of the Allen brain ISH Data (Lein et al., 2007) for cross-validation, we settled on the following genes to represent the neuronal cell

types of greatest value and highest confidence given the number of assessed cells in the scRNaseq dataset:Hcrt,Calb2,Nts,Gpr83,

Pmch, Cartpt, Tac2. Additionally, Slc17a6 and Slc32a1 were included to specify excitatory and inhibitory neurons respectively and

Map1bwas used as a pan-LHA neuronal marker. Due to the over-representation of specific neuronal cell types (e.gHcrt neurons) and

under-representation of some neuronal cell types (e.g inhibitory neurons) in this dataset (likely due to bias during hand sorting), we

chose to supplement the marker list with those identified in a recently published dataset (Mickelsen et al., 2019). Additional genes

were selected for inclusion in an effort to represent a broader diversity of cell types in the LHA. The collected final list of marker-genes

is in Table S5. We note that this is not the only combination of genes that could feasibly serve to represent these molecularly defined

cell types.

Integration of scRNA-Seq datasets
To obtain a broader diversity of molecularly defined cell types in the LHA, we integrated our scRNA-Seq data with published LHA

scRNA-Seq datasets (Mickelsen et al., 2019; Rossi et al., 2019). Processed gene count expression matrices for the two published

datasets were directly downloaded from Gene Expression Omnibus (GEO). The Mickelsen et al. dataset (GSE125065) was obtained

via the 103Genomics platform, data fromboth female andmalemicewere used. TheRossi et al. dataset (GSE130597) was obtained

via the Drop-seq method (Macosko et al., 2015) and only control groups (male animals) were included. Before datasets integration,

the three scRNA-Seq datasets were pre-processed independently to filter out non-neurons aswell as cells of low quality. First, similar

to described above, genes that were expressed in less than 5 cells and cells with fewer than 200 detected features were first

removed. Then cells with unique gene counts over 7,500 or under 500 were removed to eliminate multiplets as well as cells with

low quality. Next, gene expression in remaining cells were normalized to total expression and log-transformed. Then the top

2,000 highly variable features were selected from each dataset after variance-stabilizing transformation (vst) (Hafemeister and Satija,

2019). Z-score transformed data was used for dimension reduction and clustering analysis. Non-neuronal clusters were identified by

expression of non-neuronal markers (e.g., Aqp4, Olig2, Opalin, Pdgfra, Ctss, Flt1, etc.) and absence of neuronal markers (Snap25,

Syp, Tubb3, Map1b, etc.) and removed.

After pre-processing, 4,418 cells from the Mickelsen et al. dataset and 2,087 cells from Rossi et al. dataset were included for inte-

gration with our dataset (1,425 cells). Consensus features (genes = 13,613) across all three datasets were used for downstream anal-

ysis. Integration of multiple scRNA-Seq datasets was performed using Seurat (v3.2.0) (Stuart et al., 2019). Briefly, the top 2,000 highly

variable features across three datasets were selected independently with the FindVariableFeatures function in Seurat and used to

identify cells with common molecular features across datasets (aka. integration anchors) after canonical correlation analysis

(CCA) based dimensionality reduction. These integration anchors were filtered (k.filter = 200) and ranked (k.score = 30) based on their

shared overlap of mutual neighborhoods. This step is executed with the FindIntegrationAnchors function in Seurat. These selected

anchor sets were used to compute aweighted integration vector (weighted by anchor pairs’ similarity and anchor correspondence, k.

weight = 100), which is used to transform the three datasets into a common space (merging our dataset and the Rossi et al. dataset

into the Mickelsen et al. dataset) using Seurat’s IntegrateData function.

The integrated dataset was then used as input for dimensionality reduction and clustering, as described above. Neurons were first

separated into excitatory and inhibitory populations and then clustered. The Silhouette score, SC3 stability index and the Jaccard

index distribution after bootstrapping were used to determine the optimal resolution and neighborhood size for clustering. The

Silhouette score is a measure of how similar a cell is to its own cluster compared to other clusters and the silhouette score for

each cell in a specified cluster was calculated as the Euclidean distance in PCA space using the CalculateSilhouette function in

Seurat. The SC3 stability index is used to evaluate the optimal resolution parameter. It looks at how cells cluster over different res-

olutions. Clusters that share the same cells across resolutions get higher index. The SC3 stability index was calculated using the clus-

tree package in R (Zappia andOshlack, 2018). For bootstrap analysis, we randomly selected 80%of cells from the integrated dataset

and performed dimensionality reduction and clustering. We then calculated the Jaccard index between the most similar new

cluster and the original cluster. This procedure was repeated 100 times and the distribution of Jaccard index across clusters

were plotted and used to evaluate cluster stability. Clusters with high stability show consistently high Jaccard similarity index with

bootstrapping. This bootstrap analysis was performed using scclusteval package in R (Tang et al., 2020) with modifications. Based
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on these evaluations, the following parameters were chosen for SNN based clustering of the Slc17a6 and Slc32a1 neurons: Slc17a6

clusters, k.param = 20, resolution = 0.6; Slc32a1 clusters, k.param = 60, resolution = 1.2.

To determine how well selected marker-genes could recover major cell types, we correlated the expression of selected marker-

genes from individual neurons in scRNA-Seq to cluster average and assigned the cell type identity with the highest correlation.

Comparing the true and predicted identity of each cell, we found that the proportion of neurons that can be correctly assigned in

this way scaled linearly up to the selected 24marker-genes, and further increase in the number of marker-genes did not substantially

improve this (Figure S3F). Based on this analysis, we found thatmost scRNaseq clusters (29/34) can be identified by selectedmarker-

genes (Figure S3G), with the remaining scRNaseq clusters either lacking highly selective markers (seq-e16, seq-i2, seq-i3, seq-i4) or

excluded due to contamination with oligodendrocytes (seq-e4, based on Opalin expression).

EASI-FISH data processing summary
EASI-FISH analysis pipeline is critical for accurate and quantitative characterization of thick tissue, multiplex FISH datasets and in-

cludes image stitching, registration, FISH spot detection and 3D cell segmentation. Large volumetric EASI-FISH datasets collected

on a Zeiss Lightsheet Z.1 microscope were saved as single multidimensional (multi-tile, multi-channel, z stack) CZI files. We also ex-

ported a metadata file (MVL format) that includes tile configurations for the stitching step, which were later converted into a JSON

format.

Image Stitching
We used a previously developed flat-field correction and stitching package (Gao et al., 2019) that enabled rapid processing of 3D

image tiles with Apache Spark-based high-performance computing environments (https://github.com/saalfeldlab/stitching-spark).

The pipeline first automatically performs a flat-field correction for each tile to account for intensity variations across the lightsheet.

The flat-field correction was based on corrected intensity distributions using regularized energy minimization (CIDRE) (Smith

et al., 2015), where the flat-fields were calculated for each tile and channel independently and applied to each tile stack prior to stitch-

ing. It then derives the globally optimal translation for each tile that minimizes the sum of square distances to competing optimal pair-

wise translations estimated by phase-correlation (Preibisch et al., 2009) with the DAPI channel. The same transformation was applied

to the other three image channels. Stitched image volumes were then exported and saved into N5 format. This flat-field correction

and stitching pipeline enabled rapid and automated data processing. All flat-field correction, stitching, and data export were

executed on HHMI Janelia’s LSF computing cluster.

Image Registration
Because sample handling could cause small deformations and 3D shifts in field-of-view (FOV) during image acquisition, to correct for

this, image volumes from each round were registered after stitching based on the DAPI channels. To enable rapid and robust data

processing, we developed a registration package that combined random sample consensus (RANSAC) (Fischler and Bolles, 1981)

based feature matching with non-symmetric, diffeomorphic image registration, called Bigstream (https://github.com/GFleishman/

bigstream). First, a Difference of Gaussian (DoG) filter was applied to 83 83 4 downsampled (1.843 1.843 1.68 mm, post-expan-

sion) image pairs and local maxima above a selected threshold were selected as features, matched with RANSAC and affine trans-

formed. After applying this global affine transformation to 4 3 4 3 2 downsampled (0.92 3 0.92 3 0.84 mm, post-expansion) image

volumes, the transformed image volumes were split into 256 3 256 3 256 pixel-chunks with 12.5% spatial overlaps along each

boundary for further processing. Another round of feature selection and affine transformation was performed on each image chunk

at 0.923 0.923 0.84 mm (post-expansion) scale, followed by deformable registration. For better integration with the rest of the image

processing pipeline, we created an implementation in Python of the non-symmetric diffeomorphic registration algorithm from the

Greedy software package (Yushkevich et al., 2016). This enables in-memory data sharing of objects produced by different steps

of the pipeline and thus avoids data saving in intermediate steps. It also guarantees compatibility of object formats such as

transforms. All registration steps on image chunks can be executed in parallel. The global affine, piecewise affine, and piecewise

deformable transforms were composed to a single displacement vector field stored in N5 format. Both forward transform and inverse

transforms were computed. The forward transform maps on-grid-positions from the fixed coordinate system to corresponding

(potentially off-grid) locations in the moving coordinate system and is required for resampling moving image data to match fixed im-

age data. The inverse transformmaps on-grid-positions in themoving coordinate system to (potentially off-grid) locations in the fixed

coordinate system and is required for moving explicit positional data (such as detected FISH spot coordinates) from the moving co-

ordinate system to the fixed coordinate system. For assessing the registration accuracy, mean structural similarity index (SSIM)

(Wang et al., 2004) between the moving and fixed image was computed.

FISH Spot Detection
Airlocalize (Lionnet et al., 2011) was adapted and optimized for spot detection in large image volumes. It implements a local back-

ground correction step that subtracts background fluorescence surrounding each spot that is associated with out-of-focus spots

due to light-sheet excitation beam thickness. Briefly, for Airlocalize, images were first passed through a Difference of Gaussian

(DoG) filter and global background subtracted. Next, a pre-detection step was performed that identifies local maxima above

threshold within a 5-pixel radius, which was used to estimate the rough spot position. Then a local background correction was per-
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formed based on background estimation around each spot and a 3DGaussian fit was used to estimate the spot location aswell as the

spot fluorescence intensity. Airlocalize was originally written inMATLAB andworks best for epifluorescence and confocal image data

�1 GB in size.

For large image data associated with the EASI-FISH data collection pipeline, we developed a high-throughput version to allow for

distributed data access and processing. In order to integrate it with other parts of the EASI-FISH pipeline, we compiled Airlocalize

(with minor modifications) into a Python package for distribution. Large image volumes were split into overlapping chunks (�1GB

in size, 10% overlap in z and 5% overlap in x and y). Spot detection on each chunk was performed simultaneously in parallel. The

detected spots from individual image chunks were combined, with repetitive detections in the overlap regions removed. Detected

spot positions and intensities were exported as a single CSV file. All spot detection procedure was performed on full resolution

images. Crosstalk correction was applied to images acquired in the red channel (AF546) to correct for bleed-through from the

co-acquired DAPI channel before spot detection.

We called this Airlocalize-based high-throughput spot detection approach hAirlocalize. After spot detection from each EASI-FISH

round, the inverse transformation matrix acquired from the registration step (see above) was applied to the spot point cloud to trans-

form spots to fixed image coordinate. Spot detection and warping were confirmed by visual inspections.

3D Soma Segmentation
Most approaches for cell segmentation use thin tissue sections and an assumption of a single cell layer, which is often invalid, and

prior approaches in thicker tissue lack accurate segmentation (Alon et al., 2021; Wang et al., 2018). To achieve automatic and ac-

curate detection and segmentation of cells in 3D image volumes, we developed a deep learning-based segmentation method based

on the previously published 3D StarDist approach (Weigert et al., 2020). In a first step, StarDist predicts for each pixel its cell center

probability and its radial distances to the nearest cell borders. In a second step, it selects the center point of each cell and uses the

radial distances at this point to create a star-convex polyhedra that approximates the cell outlines. While this approach provides high

detection accuracy in situations with many crowded and dense objects, the resulting segmentation masks are imprecise for non-

convex cell shapes which could lead to unwantedmisallocation of FISH spots. To address this problem, we retained the center prob-

ability and distance prediction step from StarDist, but afterward aggregated pixel affinity maps from the densely predicted distances,

an approach that we called Starfinity. The final segmentation masks were obtained by applying a watershed segmentation on the

affinity maps while using the thresholded center probability as seeds. We trained such a Starfinity model with annotated cells

from 3 different brain areas (LHA, CEA and cortex) using an iterative approach. Manual annotation was performed using Paintera

(https://github.com/saalfeldlab/paintera). First, image stacks with a total of 248 intact cells were manually annotated at full resolution

(0.233 0.233 0.42 mm) to train a preliminary Starfinitymodel. Then from predictions made from this preliminary model, we selected

images where cells were mistakenly segmented and corrected the errors in these images manually. We then fed the corrected an-

notations (827 cells) to train the model. For both training and predictions, images were downsampled (43 43 2-fold) to increase the

receptive field of themodel, make the pixel resolution approximately isotropic, and reduce computational demands. The training and

prediction were based on the cytosolic DAPI channel. The trained model gave a segmentation accuracy of 93%, with 4% over-seg-

mentation errors, 1% under-segmentation errors and another 2% contaminated by neighboring cells.

The Starfinity segmentation result then underwent a post hoc, semi-automated correction for over-segmentation errors. First, we

identified the over-segmented ROI pairs based on high gene expression correlation between neighboring ROIs (1. Pearson Corre-

lation Coefficient greater than 0.998, this cutoff was determined by maximum Youden’s index calculated from the ROC analysis

of manually inspected data; 2. the centroid positions of the selected ROI pair were less than 23 mm (pre-expansion) apart and the

two ROIs were touching/connected). Over-segmentation errors usually occur with the primary dendrite (small fragments) separated

from its soma (usually average sized) (Figure S2E), therefore we used ROI size as another filter. To eliminate false merges between

neuronal processes and between neuronal process and non-neurons (which are usually quite small), we further filtered out ROI pairs

that are smaller than 600 mm3 in size. To avoidmerging two neighboring neurons with highly correlated gene expression, for ROI pairs

greater than 1500 mm3 in size (average soma size in this region) and ROIs that had more than one matches, we first ranked the cor-

responding ROI pairs based on their correlation coefficient and then inspected themmanually (these comprises < 15% of all flagged

ROI pairs). Finally, identified ROI pairs were computationally merged into one single ROI. This method was estimated to eliminate

62% over-segmentation errors, bringing down the total over-segmentation error to less than 2%.

End-to-end Analysis Pipeline
To enable easy adoption of EASI-FISH, we built a self-contained, highly distributed, and platform agnostic computational pipeline

(https://doi.org/10.5281/zenodo.5652239, for active updates: https://github.com/JaneliaSciComp/multifish) for analyzing EASI-

FISH data. The pipeline was built using Nextflow (Di Tommaso et al., 2017), with all software containerized, which makes it portable

and reproducible. The pipeline has been tested and proven to work on multiple platforms, including stand-alone workstations, the

IBM Load Sharing Facility (LSF) computing cluster and the cloud platform, Amazon Web Services (AWS). It could also be adapted

to execute on other batch schedulers (such as SLURM) and cloud platforms.

The pipeline is also highly flexible.We provide an end-to-end pipeline for EASI-FISH users to analyze their imaging data and directly

translate over 10 terabytes of image data into spot counts per cell. The EASI-FISH steps (stitching, registration, segmentation, spot

detection, etc.) in the pipeline are modularized, allowing flexibility for users to select only the necessary modules for their specific
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image scale Stand-alone workstation (8 h total) LSF cluster (3 h total)

Stitching full resolution 2.5 h 1.5 h

Registration 4 3 4 3 2 or 8 3 8 3 4 downsampled 0.5 h 1.5 h

Spot detection full resolution 7.5 h (2.5 h/channel) 1.5 h

Segmentation 4 3 4 3 2 downsampled 0.2 h 0.2 h

Post-processing – 0.05 h 0.05 h
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application. Furthermore, each module is containerized using Docker, and can therefore be easily substituted with a different imple-

mentation or algorithm.

The pipeline is openly available and includes extensive documentation and automatic download of example datasets for push-but-

ton replication. Monitoring of task execution and resource utilization is available using the Nextflow Tower web UI.

For analysis of an example dataset (35GB, 4 channels, 600 z-slices for each EASI-FISH round), we provide the processing time

below for each step on a stand-alone workstation (128GB RAM, 40 cores) and the IBM LSF computing cluster. For data that is larger

than 100GB, we recommend usage of cluster or cloud platforms for improved data parallelization and speed.

Although this breakdown shows the time for each step, it is important to note that, once the stitching step is finished, the subse-

quent steps (registration, segmentation, and spot detection) can be performed simultaneously in parallel. The pipeline can be used to

analyze a complete multi-round EASI-FISH experiment all at once. Users can also choose to interleave the data collection and anal-

ysis with minimal modification. This way, the time lag between data acquisition and analysis will be negligible and users can start

running through the pipeline once two rounds of EASI-FISH data have been acquired.

Visualization
The stitched and registered volumetric image data was visualized with Fiji plugin N5 Viewer (https://github.com/saalfeldlab/

n5-viewer) based on BigDataViewer (Pietzsch et al., 2015) for interactive browsing of multichannel multiscale N5 datasets. More flex-

ible visualization options, including overlaying with segmentation masks, inspection of detected spots, ROIs and spots queries were

performed using Napari (Napari contributors, 2019) with custom scripting in Python (https://zenodo.org/record/5658557).

Post-processing
With the segmentationmasks from the DAPI channel and spots extracted from FISH channels, extracted spots from each FISH chan-

nel were then assigned to individual ROIs to obtain a spot count for each FISH channel (gene). We also performed the following steps

for improved data quality, all code available at https://zenodo.org/record/5658557.

Filter ROIs

Cells on the edge of the field of view that were only partially captured in 3D or failed to be captured in one or more EASI-FISH image

rounds were removed from the analysis. Additionally, we observed autofluorescence in the red channel on the surface of the spec-

imen in later rounds (> 7) and excluded part of the specimen (�30-50mmpre-expansion, from the top surface along the z axis) from the

downstream analysis. After this procedure, 77% of detected ROIs were used for the following analysis (Table S6).

Lipofuscin spots

We observed autofluorescent punctate signals in the tissue-gel samples that are likely due to lipofuscin. Lipofuscin puncta are lyso-

somal storage bodies, and their presence could lead to false positive spot detection.We took advantage of the fact that lipofuscin has

a broad excitation/emission spectrum and can therefore be identified by signal colocalization in more than one channels. In the cur-

rent application, the 488 nm and 669 nm channels were acquired at the same time andwere used to identify lipofuscin spots by signal

colocalization. We identified spots whose centroid positions were within a radius of 3 pixels (345 nm, pre-expansion) between the

488 nm and 647 nm channels and subtracted these spots for all FISH channels. For genes with high expression levels (spot count

exceeding 200 per cell, detected in round 4 to round 10), we chose to use the median lipofuscin spot counts for that cell across all

rounds to avoid subtraction of real spots due to high spot density in one or both channels.

Dense spots

For cells with highly expressed genes, the integrated fluorescence intensity was used instead to estimate spot counts. First, we

analyzed the distribution of spot fluorescence intensity from the hAirlocalize output for each gene. The spot intensity followed a

right-skewed distribution. Outliers with high intensity values were likely detection of multiple spots in cells with high expression.

The mode of the distribution was used as an estimate for single spot intensity for any given gene. The spot count in any given cell

was calculated by dividing the sum of fluorescence intensity in that cell with the estimated single spot intensity. We compared

the estimated spot counts with hAirlocalize spot counts for genes that showed low or medium expression levels (less than 200

spots/cell) in the majority of cells and observed that the two measurements were highly correlated and comparable in the low to me-

dium spot density range. Slc32a1, for example (Figure S2F), shows a least-squares linear regression fitting to the data indicating a

slope of 1.03 and R2 of 0.93. Because intensity-estimated spot counts can be sensitive to background fluorescence in cells with low

gene expression, we chose to use hAirlocalize measurement in these cells. Based on scRNA-Seq, we found that gene expression
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variability between cells goes upwithmean expression level (Figure S2G), such that spots for a given genemay be resolvable in some

cells but not others. Therefore, we chose a spot density threshold to determine whether to use hAirlocalize spot counts or intensity-

estimated spot counts for a given gene in each cell. For cells with spot density higher than 0.01spot/voxel (corresponding to spot

separation on average �1.3 mm apart), we applied the intensity-estimated spot counts.

Neuronal morphological analysis

Taking advantage of the accurate 3D segmentation, we measured the morphological properties of neuronal cell body (soma) seg-

mentation masks using the scikit-image implementation of regionprops. The spatial position of each neuron was defined as the

centroid of the segmentationmask. Solidity was ameasure of the overall concavity andwas defined as the neuronal cell body volume

divided by that of its convex hull. The eccentricity was defined as the length ratio between the minor axis and the major axis (Fig-

ure S7I). To calculate fraction of neurons with the most extreme somatic shapes in each cluster, we selected for cells with low ec-

centricity (elongated, < 0.7) and solidity (less convex, < 0.7) (Figure 7D). Other measurements that were not discussed here, but have

been performed include major axis length, minor axis length, orientation, extent and whether a neuron cell body is in direct contact

with a non-neuron cell body.

All measurements reported here are in pre-expansion units in mm, unless otherwise noted.

Evaluation of EASI-FISH detection efficiency, selectivity, and sensitivity
To assess transcript detection efficiency, Gad1 mRNA transcripts were labeled with interleaved probe sets conjugated to two

different fluorophores (10 probes in each set, conjugated to AF488 or AF546). Assuming independence of probe binding between

the two probe-sets, the probability of AF488 channel detection within the whole population ofGad1 transcripts should be equivalent

to that within the AF546-positive subpopulation. We measured this detection probability for the AF488 channel as 66% ± 2%. Simi-

larly, the detection probability for the AF546 channel (within the subpopulation of AF488-positive spots) was 75% ± 6%. Thus, the

false negative rates for the two probe sets are 34% ± 2% and 25% ± 6%, respectively. Again, assuming probe-set binding indepen-

dence, the false negative rate for both probe-sets together is the product of both probe-sets’ individual false negative rates, or 8% ±

2%, corresponding to a detection rate of 92% ± 2% for the full set of 20 probes.

We examined two sources of false-positive spot assignments: non-specific probe binding and amplification and true-positive tran-

script detections that may not originate within the segmented cell body. Because we used HCR v3.0, non-specific probe binding and

amplification was low (1 per 3000 mm3, 1011 spots detected in tissue volume 219.38 3 219.38 3 61.47 mm3 in size), which we deter-

mined by applying FISH probes to samples in the absence of the target gene (GFP probes in wild-type mice). For analysis of false pos-

itive background spots, we selected genes that were known to be mutually exclusive. For example, in the LHA, cells expressing Tacr3

have undetectable levels of Pdyn and vice versa based on scRNA-Seq (Figure S1L) and Slc17a7 and Gad1 expression in the cortex.

To test cell-level detection sensitivity of the EASI-FISH method, we focused on a single neuronal cell type from the scRNA-Seq

dataset, the Pmch neurons. We identified genes that are selectively expressed in this population at various levels (Table S4).

Klhl13 (UMImean = 48) and Igf1 (UMImean = 15) were selected specifically due to their unique expression in most of Pmch neurons

(high pct.1) and relative absence in other cell types (low pct.2), as well as their low absolute levels of gene expression as indicated

by UMI counts.

FISH cluster analysis
A total of �86,000 cells were identified from three specimens. Incomplete cells on the tissue surface and cells that failed to be

included in all imaging rounds were removed from downstream analysis, leaving 66,488 (77%) cells (Table S6). Neurons were

then identified using a two-components Gaussian Mixture Model (GMM) based on spot count of the LHA pan-neuronal marker,

Map1bwith probability greater than 0.7. 36,423 (55%) cells were identified as neurons in this way. Clustering analysis was performed

on z-score normalized spot counts of 24marker-genes. Unlike the scRNA-Seq analysis, no logarithmic transformation was applied to

minimize the weight of false positive spot detection. As described above, principal component analysis (PCA) was performed, and

graph-based SNN clustering analysis implemented in Seurat was used for an initial clustering using all marker-genes. Like the

scRNA-Seq analysis, this separated neurons into Slc17a6 and Slc32a1 populations. Subsequent clustering was performed on

Slc17a6 and Slc32a1 populations separately. For Slc17a6 population, Map1b and Slc17a6 were excluded from the clustering

analysis as they were not considered variables. For Slc32a1 population, non-variable genes (widely expressed: Map1b, Slc32a1;

not expressed: Bdnf, Cartpt, Trh, Pmch, Hcrt) were excluded from the clustering analysis. The clusters were reordered based on

the cluster-average of total spot counts from high to low.

As above, the Silhouette score, SC3 stability index and Jaccard index distribution as calculated by bootstrapping 80% of the data

100 times were used to choose clustering parameters: the nearest neighborhood size k and resolution to maximize the number of

stable clusters (k parameter chosen for Slc17a6 cells: 20, k parameter chosen for Slc32a1 cells: 10). Cell types with average total

spot counts from all genes below the 20th percentile of spot counts in all neurons were aggregated and assigned as poorly classified

clusters due to lack of marker-gene detection. Using this cutoff, 80% of neurons from the Slc17a6 population (Ex-1 to Ex-24) and

74.5% of neurons from the Slc32a1 population (Inh-1 to Inh-22) were classified. tSNE was used for visualization (Figures 3C and

3D) with perplexity of 50 for Slc17a6+ population and 40 for Slc32a1+ population. Most molecularly defined clusters were detected

in all three animals (Figures S4A and S4B), except Inh-1, which was located medially and was only captured in two out of three sam-

ples because of slight spatial differences at the edge of the field of view (Data S1). Gene expression within identified molecularly
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defined clusters was highly correlated across biological replicates (Figure S4E), indicating no batch effects for EASI-FISH measure-

ments and analysis

FISH to scRNA-Seq data mapping
To map FISH data to scRNA-Seq clusters, we first log-transformed the scRNA-Seq data and calculated the average marker-gene

expression in each scRNA-Seq cluster. Marker-gene expression measured via EASI-FISH was also log-transformed, thresholded

(> 30 spot counts), scaled and then correlated to scRNA-Seq clusters. Neurons were assigned to the scRNA-Seq cluster with the

highest correlation. Neurons with low correlation coefficients (< 0.5) to all scRNA-Seq clusters were not assigned. This analysis

was performed using mfishtools package in R with modifications. We then calculated the fraction of neurons from each EASI-

FISH cluster that mapped to each scRNA-Seq cluster and assigned correspondence based on the fraction of mapping. We were

able to find correspondence in 19 out of the 29 scRNaseq clusters that we expected to identify in the LHA. Clusters that did not

show strong mapping are either rare clusters (seq-e1, seq-e3, seq-e10, seq-e13, seq-e17) or not present in the region of the LHA

that we profiled with EASI-FISH, based on marker-gene distribution from Allen Brain ISH Data (seq-e11, seq-e12, seq-i12 and

seq-i14).

LHA boundaries and neighboring brain regions
The zona incerta (ZI) is characterized by a high density of inhibitory neurons with small and regular cell bodies (Kawana and Wata-

nabe, 1981; Kolmac and Mitrofanis, 1999). Therefore, we drew boundaries between the ZI and the LHA based on neuronal density

and morphology, as well as Slc17a6 and Slc32a1 expression. The entopeduncular nucleus (EP) is enriched for glutamate/GABA co-

releasing somatostatin neurons (Wallace et al., 2017), which were used to identify boundaries for EP. The fornix was identified based

on its location, circular profile, and lack of neuron somas.

Marker-gene spatial expression analysis with PCA
To identify highly correlated spatial patterns in the LHA and marker-genes with greatest spatial variation, we decomposed the 24

marker-gene expression patterns into principal components (PC). Specifically, the gene expression data (spot counts) were first

z-score normalized and mapped in 3D to reconstruct the expression patterns. 24 such images with each one representing the

expression pattern of one marker-gene were then smoothed and decomposed into principal components (PCs) that corresponded

to spatial variations in gene expression patterns. The first 4 PCs accounted for 66%of the data variation. Genes that were selected to

parcellate the LHA (Meis2, Slc32a1, Slc17a6,Otp and Hcrt) were among the ones with the most positive or negative weight (account

for greatest variations) on the first 4 PCs.

Spatial enrichment of selected marker-genes
To compute the selective spatial enrichment for Otp/Meis2, we first counted the number of Otp+ andMeis2+ neurons within a 50 mm

radius neighborhood of any given neuron. The selectivity index for Otp/Meis2 is calculated as (Otp+
num – Meis2+num) / (Otp+

num +

Meis2+num). For Slc17a6/Slc32a1, the same procedure was performed based on the number of Slc17a6+ and Slc32a1+ neurons in

the neighborhood, except for cells that co-expressed Slc17a6 and Slc32a1, which were excluded from the analysis. This procedure

was advantageous compared to an image smoothing filter as it preserved neuronal density information, which was useful for

segmentation later.

Anatomical segmentation of the LHA
The initial segmentation of the LHA was based on expression of two pairs of genes Otp/Meis2 and Slc17a6/Slc32a1. We first clas-

sified neurons into 4 classes based on their spatial enrichment for these four genes (Class 1: Slc17a6/Otp; Class 2: Slc32a1/Otp;

Class 3: Slc17a6/Meis2; Class 4: Slc32a1/Meis2) and then used Gaussian Mixture Models (n components = 50) implemented in

scikit-learn to generate the 3D segmentation (1 mm isotropic voxel resolution). This segmentation was performed separately on

each LHA volume. Then, the segmentation masks from LHA1 and LHA2 were aligned to LHA3 using the rigid registration imple-

mented in Greedy (Yushkevich et al., 2016). The fiducial landmarks (ZI, EP and fornix) and spatial distribution of marker-genes

from three animals were used to cross validate the registration. Simultaneous truth and performance level estimation (STAPLE) (War-

field et al., 2004) implemented in SimpleITK was used to generate a unified atlas with a probability threshold of more than 0.9. Discon-

nected regions that were from the same molecularly defined class (1-4) were further split and assigned unique ROIs. Small ROIs (<

0.5 3 106 mm3) were removed and the segmentation boundaries were smoothed with a Gaussian filter (sigma = 30), with ZI and EP

identified as distinct regions.

Regional parcellation of the visual cortex with STARMap data
To determine whether this computational parcellation method could be generalized to other brain regions, we applied this method to a

part of themouse primary visual cortex from the STARmap thick tissue (100mm) dataset, a known brain structure (Wang et al., 2018). As

described above, marker-genes were first z-score normalized and mapped in 3D to reconstruct the expression patterns. Images con-

taining expression patterns of 28 marker-genes were decomposed into principal components (PCs). The eigen-images from the top 4

PCs captured the laminar structures in the visual cortex (Figure S5G) and explained 87%of the variance in the dataset (Figure S5H). We
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selected genes that have the largest magnitude of weight on each principal component as candidates for structural parcellation. Based

on this criterion,Pcp4,Mbp,Cux2 andPlcxd2were chosen for parcellation. Aswith the LHA parcellation, these four geneswere used to

parcellate the imaged tissue volume into 6 cortical layers (L1, L2/3, L4, L5 and L6), the white matter and the subcortical area.

Neighborhood cell type composition
The spatial distribution of molecularly defined cell types was analyzed with neighborhood complexity and purity analysis, similar

to previously described (Moffitt et al., 2018). Briefly, the neighborhood complexity computes the number of distinct molecularly

defined cell types within a 50-mm-radius neighborhood. The neighborhood purity was defined as the fraction of neurons within

the 50-mm-radius neighborhood that were part of the most abundant molecularly defined cell type. We found that in the LHA a

50-mm-radius neighborhood consists of 16 molecularly defined cell types on average (neighborhood complexity), with on average

27% of neurons in this radius corresponding to the most abundant cluster (neighborhood purity).

Average distance to nearest neighbor (ANN) analysis
The nearest neighbor of each neuronwas queried using kdtree (scipy) and the average distance to the nearest neighbor in eachmolec-

ularly defined cell type was defined as the mean distance of neurons in a cell type to its nearest neighbor. Note that neuron number in

each molecularly defined cell type is different, therefore it is not a one-to-one relationship (e.g., multiple neurons can have the same

nearest neighbor), and the ANN between cell type A and cell type B can be different depending on which cell type was queried. For

all ANN graphs generated in this study, rows represent molecularly defined cell types that were used to look for nearest neighbor

and columns represent the corresponding molecularly defined cell types from which the nearest neighbor was identified.

Spatial distribution of molecularly defined cell types
First, to determine the spatial distribution of molecularly defined cell types (whether they were clustered, dispersed or uniformly

distributed), we compared the distribution of each molecularly defined cell type with a CSR (complete spatial randomness) process

and performed aMonte Carlo test of CSR (Cressie, 2015; Waller and Crawford, 2004). For a molecularly defined cell type withN neu-

rons, we simulated the CSR process by randomly sampling N neurons from the entire dataset (regardless of their identity) and

computed their average distance to nearest neighbors (ANNCSR). This process was repeated 1,000 times to generate a distribution

of the average distance to nearest neighbor under CSR (ANNCSR). The number of randomly sampled cells was matched to that in

each molecularly defined cell type. The ANN from each molecularly defined cell types (ANNMol) was calculated and compared to

the CSR distribution to calculate the p value. We found that all (48/48) of the molecularly defined cell types were spatially clustered

(ANNMol < ANNCSR, p < 0.05) compared to a CSR process (Table S1).

To determine the statistical significance of subregion enrichment of molecularly defined cell types, we performed a permutation

test. We shuffled the positions of all neurons 1,000 times to generate random spatial distributions. For each molecularly defined

cell type, the observed fraction of neurons enriched in each subregion was compared to the distribution of such fractions generated

by shuffling to calculate the p values and effect size (Figure 4E).

Spatial overlap of molecularly defined cell types
To determine the spatial overlap of cells from molecularly defined clusters, we first calculated the local neuronal density of each

molecularly defined cell type using kernel density estimation (kde) (scipy). To eliminate outliers, we threshold the density distribution

above 95th percentiles and generated a binarized segmentation mask for each cell type to represent its regional enrichment. Binar-

ized segmentation masks from all molecularly defined cell types were combined to generate a pixelated image with ‘intensity values’

at each voxel (10mm 3 10mm 3 10mm) representing the number of overlapping cell types occupying that voxel. This overlaid image

was used to further subdivide the LHAfl and LHAs-db subregions. The segmentation masks generated for each molecularly defined

neuronal type was used to calculate the spatial overlap between pairs of molecularly defined clusters. The fraction of spatial overlap

between molecularly defined cell types were calculated as the number of overlapping voxels that selected cell types occupy divided

by the total number of voxels occupied by either cell type.

Prediction of spatial position with gene expression
To determine whether neuronal spatial position could be predicted based on combinatorial expression of marker-genes, we trained a

multi-output Random Forest regressor to predict the spatial positions of neurons. First, gene expression data were normalized

(z-score) to a normal distribution with similar scale ranges. We trained the random forest regressor using the z-score normalized

expression of 24 marker-genes as input and the x, y, z positions (pre-expansion, in mm) as output. The prediction performance

was evaluated using 10-fold cross-validation and random permutation cross-validation (Shuffle & Split). Both coefficient of determi-

nation (R2) and the explained variance score were calculated, and they were identical when rounded to 2 decimal places. To evaluate

the importance of individual genes and their combinations in predicting neuronal position, models were trained and tested by

removing one or combinations of features (genes) and as described above, cross validation was used to evaluate the predictive po-

wer of the model based on R2 score. To evaluate statistical significance, we shuffled the relationship between the gene expression

and neuronal position 1,000 times and compared the prediction accuracy of our model to the distribution of prediction accuracy from

shuffled data to calculate the p value.
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Cross-correlation analysis between biological replicates
To determine whether findings presented here were reproducible across animals, we performed cross-correlation analysis on (1)

gene expression of molecularly defined cell types (Figure S4E), (2) marker-gene spatial distribution (Figure S5M), and (3) molecularly

defined cell type spatial distribution (Figure S6B) between biological replicates. For molecularly defined cell type gene expression,

averagemarker-gene expressions in any givenmolecularly defined cell typewere used to calculate the correlation coefficient. For the

spatial distribution of marker-genes and molecularly defined cell types, correlation analyses were performed on tissue volumes after

rigid alignment. For gene expression spatial distribution, gene expression was binarized and cells with spot count greater than 30

were defined as positive for any given gene. The image volumes from different animals were discretized into 100mm 3 100mm 3

100mm bins and the number of positive cells for any given gene was used to generate the correlation coefficient. For molecularly

defined cell type spatial distribution, instead of the number of positive cells for any given gene, the number of cells from any given

molecularly defined cluster in each bin was used for cross-correlation. All correlation analyses were performed by comparing LHA1

and LHA2 to LHA3 and p value < 0.05 were reported here.

Vizgen MERFISH data analysis
One brain slice (S2R2) from the (Vizgen, 2021) MERFISH mouse brain receptor map dataset (Vizgen Data Release V1.0. May 2021)

was downloaded and the LHA was identified and cropped out based on boundaries from neighboring brain regions (ZI, EP and the

optic tract) and the fornix. This sample was a single thin section (10 mm) corresponding to a posterior portion of our reconstructed

volume. For analysis, neurons were separated from non-neurons and divided into excitatory and inhibitory neurons based on relative

expression of Slc17a6 and Slc32a1. Similar to the EASI-FISH analysis that was described above, 483 marker-genes were z-score

normalized and mapped to reconstruct spatial expression patterns. Images containing expression patterns of 483 marker-genes

were decomposed into principal components (PCs). The eigen-images from the top 3 PCs of excitatory and inhibitory neurons

were displayed, which explained�70% of variance in the data. LHA from both hemispheres were analyzed and the right hemisphere

was shown in Figure S6K.

Connectivity analysis
To determine whether afferent axons projecting to or passing through the LHA follow the regional parcellation, we looked at dataset

collected from the AllenMouse Brain Connectivity database.We utilized the spatial search function from the Allen Brain Atlas API and

selected for experiments meeting the following criteria: 1) rAAV-EGFP tracing in wild-type animals for broad neuronal cell type

tracing; 2) density of projection signal (ratio of thresholded fluorescence pixel over all pixels in the structure) greater than 0.1 in

the LHA (6350, 5850, 6850 in the reference space was chosen as the LHA target location). 148 experiments met these criteria. Affine

alignment was applied to transform the LHA parcellation map to the reference atlas based on fiducial landmarks (ZI, EP and fornix).

Mean signal intensities in each LHA subregion were extracted from the 148 experiments. For multiple experiments from the same

injection site, cross-correlation analysis was performed to remove outlier experiments, which aremost likely due to injection site vari-

ability. Experiments with the injection site in the LHA or its neighboring brain regions (AHN, VMH) were removed because there could

be injection site contamination in the LHA. This allowed us to examine a total of 64 different brain regions that project to or pass

through the selected LHA target location and determine their relative signal intensities in LHA subregions.

Fos activity in molecularly defined cell types
To identify molecularly defined cell types based on marker-gene expression, we performed cross-correlation analysis based on

selected marker-gene expression and assigned the cell type identity with the highest correlation to each neuron. In addition to

theNts cell types that we initially set out to identify, the selected marker-genes can also recover additional clusters that were defined

from the full 24-marker EASI-FISH LHA dataset: excitatory cell types (Ex-2, Ex-6, Ex-14, Ex-17, Ex-20, Ex-23) and inhibitory cell types

(Inh-1, Inh-3, Inh-4, Inh-6, Inh-10, Inh-12, Inh-16, Inh-17). For cross-correlation, marker-gene spot counts were first z-score normal-

ized before computing the Pearson’s correlation coefficient between each neuron and themolecular cluster averages. Neurons were

assigned to the cell type identity with the highest correlation coefficient and only neurons with correlation greater than 0.8 were

included in downstream analysis to eliminate ambiguous assignment. To identify Fos positive neurons, Fos spot counts were z-score

normalized and neurons with z-score higher than 2.0 (p < 0.05) were identified as Fos positive. Neurons were combined from the ad

libitum food and water group (AL) and water-deprived group (WD) and Chi-square test for independence was performed to compare

the statistical significance of the enrichment of Fos-positive neurons in molecular cell types from the two groups (Figure S7M).

P values were adjusted for multiple comparison with the false discovery rate method.

Statistics and figure scales
Statistical analyses were performed in Python, R or Prism GraphPad and described in methods, figure legends and Table S1.

All scales (scale bar and scale arrows) in the text, figures, and figure legends were converted to pre-expansion units in mm, unless

noted otherwise.
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Figure S1. Optimization of EASI-FISH protocol, related to Figure 1

(A) Ezr, Prkcd and Slc32a1 spot counts detected with different RNA anchoring chemicals (Label-IT or Melphalan). Statistics: Table S1.

(B) EASI-FISH was optimized to reduce light scattering in large tissue specimens (0.8 mm3 0.8mm3 0.3mm), as demonstrated by stable signal intensity across

the x, y, and z axes when compared to the original exFISH protocol (Chen et al., 2016), which shows a substantial decay across all dimensions. Single-side

illumination during imaging. Shading denotes standard deviation (SD) around mean.

(C) Representative images showing RNAscope detection of Slc17a7 in 300mm EASI-FISH cortical sample. A small field of view on the right edge of the tissue-gel

sample is shown here. Left: schematic showing where the representative image volume (middle and right) was taken, middle: single optical plane from the image

volume, right: side-view of the image volume. Scale bar: 100mm.

(D) Signal intensity quantification of the image volume shown in (C). Shading denotes standard deviation (SD) around mean.

(E) EASI-FISH is optimized for high specificity, as indicated by minimal spot detection in the absence of RNA (ii), low non-specific binding/HCR initialization of

hairpins in the absence of probes (iii), and low spot detection in the absence of the target geneGFP (iv,Sst detection as positive control) as compared to control (i).

Scale bar: 25 mm.

(F) Quantification and (G) representative image showing rapid photobleaching of Alexa Fluor 546 (AF546) in the presence of anti-fade (PPD). ***p < 0.001.

Statistics: Table S1.

(H) DNase I can be used to remove FISH signals and allows for re-probing without signal loss. Top: before DNase I stripping, middle: after DNase I stripping,

bottom: re-probed after DNase I stripping, shown as axial projection. Scale bar: 10 mm.

(I) DAPI staining of DNA (left) and RNA (middle) in EASI-FISH samples. Note that cells with low RNA content can have very weak DAPI RNA staining. Right panel:

no DAPI staining in tissue in the absence of oligonucleotides (DNase and RNase treatment). Scale bar: 25 mm.

(J) EASI-FISH detection efficiency assessed by co-localization of interleaved HCR probes targeting the same gene, Gad1. Scale bar: 5 mm.

(K) EASI-FISH false negative detection as indicated by co-detection of low expressors Klhl13 and Igf1 in Pmch neurons from the LHA.

(L) EASI-FISH false positive detection in mutually exclusive genes, Pdyn and Tacr3. Left: UMIs of Pdyn and Tacr3 in LHA neurons detected with scRNA-Seq,

Right: Spot counts of Pdyn and Tacr3 in neurons detected with EASI-FISH.

(M) Representative images (left) and quantification (right) showing reliable detection of the same gene (Gad1) across 3 rounds of FISH in cortex. Scale bar: 5 mm.

(N) Reliable spot detection of the same gene (Gad1) in biological replicates.

(O) Spot counts of Slc32a1 and Nrgn in the same neurons from EASI-FISH round 1 and round 8. Statistics: Table S1.

(P) RNA stability and (Q) false positive detection in the LHA samples used for EASI-FISH demonstration. Dotted lines in (O) and (P): linear regression fit (equation

and R2). Statistics: Table S1.
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Figure S2. EASI-FISH data processing pipeline, related to Figure 2

(A) Representative multi-tile images after stitching. Left: Representative single image plane after tile-tile stitching. White grids indicate the dimensions of tile

overlaps. Right: zoom-in of region highlighted in red box (left). Scale bar: 50 mm.

(B) Schematic illustration (cartoon images) of the round-to-round registration pipeline.

(C) Representative images showing registration of 9 rounds of EASI-FISH images based on RNA-staining (cytoDAPI). Round 2 was used as the fixed image round

(shown in red, all other rounds in green). Structural similarity to fixed round is shown in parentheses. Scale bar: 50 mm.

(D) Comparison of segmentation methods: Ilastik in combination with watershed (left), StarDist (middle) and Starfinity (right). Representative segmentation errors

are highlighted by white arrows. Thick arrows indicate under-segmentation errors (cell-cell merges); Arrowheads indicate under-detection errors; Thin arrows

indicate StarDist-specific errors due to star-convexity constraints.

(E) Segmentation errors in Starfinity, over-segmentation (one cell was split into two labels), under-segmentation (two cells assigned the same label), contami-

nation (segmentation boundaries not properly drawn), highlighted with white arrows.

(F) Spot count comparison between hAirlocalize and integrated intensity-based estimation in low-expressor-cells (Slc32a1). Black line: linear regression fit

(equation and R2). Statistics: Table S1.

(G) 24 marker-gene expression level variation, shown as log10 (standard deviation), as a function of average gene expression log10 (average UMI/cell) in scRNA-

Seq population. Black line: power-law fit (slope: k). Statistics: Table S1.
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Figure S3. scRNA-seq analysis of molecularly defined cell types in the LHA, related to STAR Methods
(A) tSNE plot of scRNA-Seq data showing Map1b, Slc17a6, and Slc32a1 expression in the LHA neurons.

(B) tSNE plot for molecularly defined clusters in the LHA, with cells color-coded by cluster.

(C and D) Hierarchical analysis of the Slc17a6+ clusters (C) and Slc32a1+ clusters (D).

(E) Cell cluster distribution across three datasets.

(F) Percent of correctly mapped neurons with increased number of marker-genes (dotted vertical line indicates percent of neurons correctly mapped with the

selected 24 marker-genes). The top 300 most differentially expressed marker-genes were chosen for this analysis.

(G) Proportion of neurons correctly mapped to each scRNA-Seq cluster based on selected 24 EASI-FISH marker-genes.
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Figure S4. EASI-FISH for profiling LHA molecular markers, related to Figure 3

(A and B) tSNE plot showing Slc17a6+ and Slc32a1+ cluster distribution in different animals (from left to right: LHA1, LHA2 and LHA3), see Figure 3C and 3D) for

cell type correspondence.

(C and D) Heatmap and hierarchical analysis of marker-gene expression for (C) Slc17a6+ and (D) Slc32a1+ molecularly defined cell types. Color bar: z-score

normalized spot count.

(E) Correlation analysis of marker-gene expression between samples within molecularly defined cell types.

(F) Proportion of neurons from EASI-FISH clusters mapped to scRNA-Seq clusters based on cross-correlation of marker-gene expression.

(G) Summary table showing correspondence between EASI-FISH cluster and scRNaseq clusters.
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Figure S5. Spatio-molecular parcellation of the LHA, related to Figure 4

(A–D) Principal component analysis (PCA) of themarker-genes spatial distribution. (A) Eigen-images from the top 4 principal components (PCs), two different axial

depths (60 mm and 240 mm) shown here. Scale arrows: 150 mm. (B) Explained variance from the top 4 PCs. (C and D) PCA plot showing the spatial expression

variations of marker-genes on the top 4 PC axes. Scale arrows: 150 mm.

(E) Relative Otp/Meis2 enrichment across three samples. Scale arrows: 150 mm.

(F) Relative Slc17a6/Slc32a1 enrichment across three samples. LHA1 and LHA2 were aligned to LHA3 with rigid registration. Scale arrows: 150 mm.

(G–L) Computational parcellation of a region of the visual cortex using published STARmap dataset. (G) PCA of the marker-genes spatial distribution and eigen-

images from the top 4 PCs. (H) Explained variance from the top 4 PCs. (I and J) PCA plot showing spatial expression variations of marker-genes on the top 4 PC

axes. (K) Computational parcellation of the visual cortex with 4 genes (Mbp,Pcp4,Cux2,Plcxd2) selected from the PCA analysis. (L) Expression patterns of known

layer-specific marker-genes overlaid with computational parcellation.

(M) Correlation analysis of marker-gene spatial distributions across samples. Image volumes were first aligned and then binned to 103 103 4 bins. The number

of marker-gene positive cells in each bin was calculated and used for the correlation analysis.

(N) Spatial neuronal density (top), Slc17a6+ neuronal density (middle) and Slc32a1+ neuronal density (bottom) in the LHA, computed using kernel density

estimation (kde). Scale arrows: 150 mm.
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Figure S6. Molecularly defined cell types are enriched in LHA subregions, related to Figure 5

(A) Molecularly defined cell type compositions in LHA subregions.

(B) Correlation analysis of the spatial distribution of molecularly defined clusters across samples. Fraction of molecularly defined neuron clusters in each sub-

region was used for the correlation analysis.

(C) Spatio-molecular parcellation of the LHA (as in Fig. 4D) with additional subdivisions based on segregation ofmolecularly defined cell types. Annotations in gray

and dotted line boundaries indicate subdomains within LHAs-db and LHAfl based on spatial segregation of molecularly defined cell types. Scale arrows: 150 mm.

(legend continued on next page)
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(D) Fraction of neurons from selected molecularly defined clusters in the medial and lateral part of the LHAs-db.

(E) Fraction of neurons from selected molecularly defined clusters in the LHAfl subdomains.

(F) Molecularly defined cell types grouped by their spatial overlap.

(G) Molecularly defined-cluster-occupancies in the LHA. Colormap indicates the number of clusters occupying each location. Scale arrows: 150 mm.

(H) Spatial distribution of marker-gene expression in parcellated LHA subregions.

(I) Random Forest regression models were used to predict the spatial position of neurons based on marker-gene expression. The prediction accuracy with all 24

marker-genes were calculated and compared to that with 23 marker-genes, with the selected marker-gene removed.

(J) Prediction accuracy of neuronal spatial position in the presence or absence of Otp, Meis2, Slc17a6, Slc32a1. Error bars in (I and J) represent SD of model

prediction accuracy with cross validation.

(K and L) PCA on the spatial distribution of genes from Vizgen MERFISH dataset, separated by excitatory (top) and inhibitory (bottom) populations. (K) Eigen-

images from the top 3 PCs. Parcellation map drawn based on Slc17a6/Slc32a1 expression. LHAs-db is shown in gray shading because it is transitioning away as

this sample corresponds to posterior portion of the volume that we analyzed. Although gene selection for the MERFISH dataset was not ideally suited to describe

LHA cell types, PCA analysis of the gene expression patterns showed spatial variability in gene expression that corresponded to five of the LHA subregions

described above (LHAd-db, LHAdl, LHAfl, LHAfm and LHAs-db) in eigen-images from the top PCs. For excitatory neurons, LHAd-db and LHAfl are apparent in

PC1 and PC3, with EP and LHAdl in PC2. For inhibitory neurons, LHAfm is observed in all 3 PCs and LHAs-db is a distinctive region in PC3. ZI can be identified

from both excitatory PC3 and inhibitory PC2. Scale arrows: 150 mm. (L) Explained variance from the top 3 PCs, which explain �70% variance from the data.
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Figure S7. EASI-FISH identified molecularly defined clusters and their morphology and enrichment in IEGs, related to Figures 6 and 7

(A) Expression of selected genes in Slc17a6 and Slc32a1 co-expressing neurons.

(B) Spatial distribution ofSlc17a6 andSlc32a1 co-expressing cluster, Ex-12.Majority of these neurons are in the entopeduncular nucleus (EP), with a small cluster

in the LHAd-db. Scale arrows: 150 mm.

(legend continued on next page)
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(C) Representative image highlighting the Slc17a6 and Slc32a1 co-expressing neurons in the EP and LHA. Left: Representative single optical plane image

showing Slc17a6 and Slc32a1 expression in the LHA. Scale bar: 100mm. Right: zoom-in of region highlighted in blue box (left) to show the Slc17a6/Slc32a1

neurons in the LHA, Scale bar: 50mm.

(D) Immunofluorescence (IF) signals before (–) and after (+) EASI-FISH procedure, suggesting that IF signals were well preserved during the EASI-FISH procedure.

Scale bar: 10mm.

(E) Minimal RNA loss was observed during IF procedure.

(F) Summary table showing number of positive neurons detected with IF and FISH for neuropeptides (MCH, Orexin, TRH, SST, NTS) and transcription factors

(OTP, MEIS2).

(G) Correlation between total RNA content and soma size. Statistics in Table S1.

(H) Correlation between pan-neuronal marker, Map1b expression and soma size. Statistics in Table S1.

(I) Schematic showing 3D morphological measurement, solidity and eccentricity performed in (J).

(J) Solidity and eccentricity measurement in EASI-FISH excitatory (left) and inhibitory (right) clusters. Statistics in Table S1.

(K) Density analysis of neurons with irregular shape. Four different axial depth shown as representative images. From left to right: anterior to posterior (rostral/

caudal). Scale arrow: 150 mm.

(L) tSNE plot showing baseline Fos expression in the LHA based on scRNA-Seq. see Figures S3B and S4G for corresponding molecular cell types.

(M) Incidence of Fos expression in additional molecularly defined neurons from ad libitum (AL) and water-deprived (WD) groups. Number of neurons analyzed

from each molecularly defined cell type in each group. Differences in Fos expression for these cell types were not statistically significant after correction for

multiple comparisons. Statistics in Table S1.
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